Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 17446, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36261683

ABSTRACT

Adult central nervous system (CNS) axons fail to regenerate after injury, and master regulators of the regenerative program remain to be identified. We analyzed the transcriptomes of retinal ganglion cells (RGCs) at 1 and 5 days after optic nerve injury with and without a cocktail of strongly pro-regenerative factors to discover genes that regulate survival and regeneration. We used advanced bioinformatic analysis to identify the top transcriptional regulators of upstream genes and cross-referenced these with the regulators upstream of genes differentially expressed between embryonic RGCs that exhibit robust axon growth vs. postnatal RGCs where this potential has been lost. We established the transcriptional activator Elk-1 as the top regulator of RGC gene expression associated with axon outgrowth in both models. We demonstrate that Elk-1 is necessary and sufficient to promote RGC neuroprotection and regeneration in vivo, and is enhanced by manipulating specific phosphorylation sites. Finally, we co-manipulated Elk-1, PTEN, and REST, another transcription factor discovered in our analysis, and found Elk-1 to be downstream of PTEN and inhibited by REST in the survival and axon regenerative pathway in RGCs. These results uncover the basic mechanisms of regulation of survival and axon growth and reveal a novel, potent therapeutic strategy to promote neuroprotection and regeneration in the adult CNS.


Subject(s)
Optic Nerve Injuries , Retinal Ganglion Cells , Humans , Retinal Ganglion Cells/metabolism , Axons/metabolism , Nerve Regeneration/physiology , Optic Nerve Injuries/genetics , Optic Nerve Injuries/metabolism , Transcription Factors/metabolism
2.
J Cereb Blood Flow Metab ; 42(7): 1294-1308, 2022 07.
Article in English | MEDLINE | ID: mdl-35107038

ABSTRACT

Perinatal hypoxic/ischemic (HI) brain injury is a major clinical problem with devastating neurodevelopmental outcomes in neonates. During HI brain injury, dysregulated factor production contributes to microvascular impairment. Glycolysis-derived lactate accumulated during ischemia has been proposed to protect against ischemic injury, but its mechanism of action is poorly understood. Herein, we hypothesize that lactate via its G-protein coupled receptor (GPR81) controls postnatal brain angiogenesis and plays a protective role after HI injury. We show that GPR81 is predominantly expressed in neurons of the cerebral cortex and hippocampus. GPR81-null mice displayed a delay in cerebral microvascular development linked to reduced levels of various major angiogenic factors and augmented expression of anti-angiogenic Thrombospondin-1 (TSP-1) in comparison to their WT littermates. Coherently, lactate stimulation induced an increase in growth factors (VEGF, Ang1 and 2, PDGF) and reduced TSP-1 expression in neurons, which contributed to accelerating angiogenesis. HI injury in GPR81-null animals curtailed vascular density and consequently increased infarct size compared to changes seen in WT mice; conversely intracerebroventricular lactate injection increased vascular density and diminished infarct size in WT but not in GPR81-null mice. Collectively, we show that lactate acting via GPR81 participates in developmental brain angiogenesis, and attenuates HI injury by restoring compromised microvasculature.


Subject(s)
Brain Injuries , Hypoxia-Ischemia, Brain , Neovascularization, Physiologic , Receptors, G-Protein-Coupled , Animals , Animals, Newborn , Brain/metabolism , Brain Injuries/metabolism , Female , Hypoxia-Ischemia, Brain/metabolism , Infarction , Ischemia/metabolism , Lactic Acid/metabolism , Mice , Mice, Knockout , Neurons/metabolism , Pregnancy , Receptors, G-Protein-Coupled/genetics , Thrombospondin 1/metabolism
3.
eNeuro ; 8(1)2021.
Article in English | MEDLINE | ID: mdl-33441400

ABSTRACT

The failure of adult CNS neurons to survive and regenerate their axons after injury or in neurodegenerative disease remains a major target for basic and clinical neuroscience. Recent data demonstrated in the adult mouse that exogenous expression of Sry-related high-mobility-box 11 (Sox11) promotes optic nerve regeneration after optic nerve injury but exacerbates the death of a subset of retinal ganglion cells (RGCs), α-RGCs. During development, Sox11 is required for RGC differentiation from retinal progenitor cells (RPCs), and we found that mutation of a single residue to prevent SUMOylation at lysine 91 (K91) increased Sox11 nuclear localization and RGC differentiation in vitro Here, we explored whether this Sox11 manipulation similarly has stronger effects on RGC survival and optic nerve regeneration. In vitro, we found that non-SUMOylatable Sox11K91A leads to RGC death and suppresses axon outgrowth in primary neurons. We furthermore found that Sox11K91A more strongly promotes axon regeneration but also increases RGC death after optic nerve injury in vivo in the adult mouse. RNA sequence (RNA-seq) data showed that Sox11 and Sox11K91A increase the expression of key signaling pathway genes associated with axon growth and regeneration but downregulated Spp1 and Opn4 expression in RGC cultures, consistent with negatively regulating the survival of α-RGCs and ipRGCs. Thus, Sox11 and its SUMOylation site at K91 regulate gene expression, survival and axon growth in RGCs, and may be explored further as potential regenerative therapies for optic neuropathy.


Subject(s)
Neurodegenerative Diseases , Optic Nerve Injuries , Animals , Axons/metabolism , Cell Survival , Mice , Nerve Regeneration , Neurodegenerative Diseases/metabolism , Optic Nerve Injuries/metabolism , Protein Processing, Post-Translational , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism
5.
Restor Neurol Neurosci ; 38(2): 131-140, 2020.
Article in English | MEDLINE | ID: mdl-31815704

ABSTRACT

BACKGROUND: Glaucoma, the number one cause of irreversible blindness, is characterized by the loss of retinal ganglion cells (RGCs), which do not regenerate in humans or mammals after cell death. Cell transplantation provides an opportunity to restore vision in glaucoma, or other optic neuropathies. Since transplanting primary RGCs from deceased donor tissues may not be feasible, stem cell-derived RGCs could provide a plausible alternative source of donor cells for transplant. OBJECTIVE: We define a robust chemically defined protocol to differentiate human embryonic stem cells (hESCs) into RGC-like neurons. METHODS: Human embryonic stem cell lines (H7-A81 and H9) and induced pluripotent stem cell (iPSC) were used for RGC differentiation. RGC immaturity was measured by calcium imaging against muscimol. Cell markers were detected by immunofluorescence staining and qRT-PCR. RGC-like cells were intravitreally injected to rat eye, and co-stained with RBPMS and human nuclei markers. All experiments were conducted at least three times independently. Data were analyzed by ANOVA with Tukey's test with P value of <0.05 considered statistically significant. RESULTS: We detected retinal progenitor markers Rx and Pax6 after 15 days of differentiation, and the expression of markers for RGC-specific differentiation (Brn3a and Brn3b), maturation (synaptophysin) and neurite growth (ß-III-Tubulin) after an additional 15 days. We further examined the physiologic differentiation of these hESC-derived RGC-like progeny to those differentiated in vitro from primary rodent retinal progenitor cells (RPCs) with calcium imaging, and found that both populations demonstrate the immature RGC-like response to muscimol, a GABAA receptor agonist. By one week after transplant to the adult rat eye by intravitreal injection, the human RGC-like cells successfully migrated into the ganglion cell layer. CONCLUSIONS: Our protocol provides a novel, short, and cost-effective approach for RGC differentiation from hESCs, and may broaden the scope for cell replacement therapy in RGC-related optic neuropathies such as glaucoma.


Subject(s)
Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Retina/cytology , Retinal Ganglion Cells/physiology , Cell Differentiation/physiology , Cell Transplantation/methods , Humans , Induced Pluripotent Stem Cells/cytology , Neurogenesis/physiology
6.
Curr Biol ; 29(12): 1963-1975.e5, 2019 06 17.
Article in English | MEDLINE | ID: mdl-31155355

ABSTRACT

Following ocular trauma or in diseases such as glaucoma, irreversible vision loss is due to the death of retinal ganglion cell (RGC) neurons. Although strategies to replace these lost cells include stem cell replacement therapy, few differentiated stem cells turn into RGC-like neurons. Understanding the regulatory mechanisms of RGC differentiation in vivo may improve outcomes of cell transplantation by directing the fate of undifferentiated cells toward mature RGCs. Here, we report a new mechanism by which growth and differentiation factor-15 (GDF-15), a ligand in the transforming growth factor-beta (TGF-ß) superfamily, strongly promotes RGC differentiation in the developing retina in vivo in rodent retinal progenitor cells (RPCs) and in human embryonic stem cells (hESCs). This effect is in direct contrast to the closely related ligand GDF-11, which suppresses RGC-fate specification. We find these opposing effects are due in part to GDF-15's ability to specifically suppress Smad-2, but not Smad-1, signaling induced by GDF-11, which can be recapitulated by pharmacologic or genetic blockade of Smad-2 in vivo to increase RGC specification. No other retinal cell types were affected by GDF-11 knockout, but a slight reduction in photoreceptor cells was observed by GDF-15 knockout in the developing retina in vivo. These data define a novel regulatory mechanism of GDFs' opposing effects and their relevance in RGC differentiation and suggest a potential approach for advancing ESC-to-RGC cell-based replacement therapies.


Subject(s)
Cell Differentiation , Growth Differentiation Factor 15/genetics , Retinal Ganglion Cells/physiology , Animals , Growth Differentiation Factor 15/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL
7.
Am J Pathol ; 189(9): 1878-1896, 2019 09.
Article in English | MEDLINE | ID: mdl-31220454

ABSTRACT

Ischemic retinopathies are characterized by a progressive microvascular degeneration followed by a postischemic aberrant neovascularization. To reinstate vascular supply and metabolic equilibrium to the ischemic tissue during ischemic retinopathies, a dysregulated production of growth factors and metabolic intermediates occurs, promoting retinal angiogenesis. Glycolysis-derived lactate, highly produced during ischemic conditions, has been associated with tumor angiogenesis and wound healing. Lactate exerts its biological effects via G-protein-coupled receptor 81 (GPR81) in several tissues; however, its physiological functions and mechanisms of action in the retina remain poorly understood. Herein, we show that GPR81, localized predominantly in Müller cells, governs deep vascular complex formation during development and in ischemic retinopathy. Lactate-stimulated GPR81 Müller cells produce numerous angiogenic factors, including Wnt ligands and particularly Norrin, which contributes significantly in triggering inner retinal blood vessel formation. Conversely, GPR81-null mice retina shows reduced inner vascular network formation associated with low levels of Norrin (and Wnt ligands). Lactate accumulation during ischemic retinopathy selectively activates GPR81-extracellular signal-regulated kinase 1/2-Norrin signaling to accelerate inner retinal vascularization in wild-type animals, but not in the retina of GPR81-null mice. Altogether, we reveal that lactate via GPR81-Norrin participates in inner vascular network development and in restoration of the vasculature in response to injury. These findings suggest a new potential therapeutic target to alleviate ischemic diseases.


Subject(s)
Ependymoglial Cells/pathology , Eye Proteins/metabolism , Ischemia/pathology , Nerve Tissue Proteins/metabolism , Receptors, G-Protein-Coupled/physiology , Retinal Diseases/pathology , Retinal Neovascularization/pathology , Retinal Vessels/pathology , Wnt Proteins/metabolism , Animals , Ependymoglial Cells/metabolism , Eye Proteins/genetics , Ischemia/etiology , Ischemia/metabolism , Lactic Acid/metabolism , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Retinal Diseases/etiology , Retinal Diseases/metabolism , Retinal Neovascularization/etiology , Retinal Neovascularization/metabolism , Retinal Vessels/metabolism , Wnt Proteins/genetics
8.
Sci Rep ; 8(1): 11875, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30089839

ABSTRACT

Antenatal inflammation as seen with chorioamnionitis is harmful to foetal/neonatal organ development including to eyes. Although the major pro-inflammatory cytokine IL-1ß participates in retinopathy induced by hyperoxia (a predisposing factor to retinopathy of prematurity), the specific role of antenatal IL-1ß associated with preterm birth (PTB) in retinal vasculopathy (independent of hyperoxia) is unknown. Using a murine model of PTB induced with IL-1ß injection in utero, we studied consequent retinal and choroidal vascular development; in this process we evaluated the efficacy of IL-1R antagonists. Eyes of foetuses exposed only to IL-1ß displayed high levels of pro-inflammatory genes, and a persistent postnatal infiltration of inflammatory cells. This prolonged inflammatory response was associated with: (1) a marked delay in retinal vessel growth; (2) long-lasting thinning of the choroid; and (3) long-term morphological and functional alterations of the retina. Antenatal administration of IL-1R antagonists - 101.10 (a modulator of IL-1R) more so than Kineret (competitive IL-1R antagonist) - prevented all deleterious effects of inflammation. This study unveils a key role for IL-1ß, a major mediator of chorioamnionitis, in causing sustained ocular inflammation and perinatal vascular eye injury, and highlights the efficacy of antenatal 101.10 to suppress deleterious inflammation.


Subject(s)
Inflammation/metabolism , Interleukin-1beta/metabolism , Retina/metabolism , Retinal Diseases/metabolism , Retinal Vessels/metabolism , Animals , Chorioamnionitis/metabolism , Choroid/metabolism , Disease Models, Animal , Female , Hyperoxia/metabolism , Interleukin 1 Receptor Antagonist Protein/metabolism , Mice , Pregnancy , Receptors, Interleukin-1/metabolism
9.
J Neuroinflammation ; 14(1): 181, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28874201

ABSTRACT

BACKGROUND: Tetrahydrobiopterin (BH4) is an essential cofactor in multiple metabolic processes and plays an essential role in maintaining the inflammatory and neurovascular homeostasis. In this study, we have investigated the deleterious effects of BH4 deficiency on retinal vasculature during development. METHODS: hph-1 mice, which display deficiency in BH4 synthesis, were used to characterize the inflammatory effects and the integrity of retinal microvasculature. BH4 levels in retinas from hph-1 and wild type (WT) mice were measured by LC-MS/MS. Retinal microvascular area and microglial cells number were quantified in hph-1 and WT mice at different ages. Retinal expression of pro-inflammatory, anti-angiogenic, and neuronal-derived factors was analyzed by qPCR. BH4 supplementation was evaluated in vitro, ex-vivo, and in vivo models. RESULTS: Our findings demonstrated that BH4 levels in the retina from hph-1 mice were significantly lower by ~ 90% at all ages analyzed compared to WT mice. Juvenile hph-1 mice showed iris atrophy, persistent fetal vasculature, significant increase in the number of microglial cells (p < 0.01), as well as a marked degeneration of the retinal microvasculature. Retinal microvascular alterations in juvenile hph-1 mice were associated with a decreased expression in Norrin (0.2-fold) and its receptor Frizzled-4 (FZD4; 0.51-fold), as well as with an augmented expression of pro-inflammatory factors such as IL-6 (3.2-fold), NRLP-3 (4.4-fold), IL-1ß (8.6-fold), and the anti-angiogenic factor thrombospondin-1 (TSP-1; 17.5-fold). We found that TSP-1 derived from activated microglial cells is a factor responsible of inducing microvascular degeneration, but BH4 supplementation markedly prevented hyperoxia-induced microglial activation in vitro and microvascular injury in an ex-vivo model of microvascular angiogenesis and an in vivo model of oxygen-induced retinopathy (OIR). CONCLUSION: Our findings reveal that BH4 is a key cofactor in regulating the expression of inflammatory and anti-angiogenic factors that play an important function in the maintenance of retinal microvasculature.


Subject(s)
Microvessels/metabolism , Phenylketonurias/metabolism , Retina/metabolism , Retinal Degeneration/metabolism , Retinal Vessels/metabolism , Animals , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microvessels/pathology , Phenylketonurias/genetics , Phenylketonurias/pathology , Polycomb Repressive Complex 1/genetics , Retina/pathology , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Vessels/pathology
10.
J Immunol ; 198(5): 2047-2062, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28148737

ABSTRACT

Preterm birth (PTB) is commonly accompanied by in utero fetal inflammation, and existing tocolytic drugs do not target fetal inflammatory injury. Of the candidate proinflammatory mediators, IL-1 appears central and is sufficient to trigger fetal loss. Therefore, we elucidated the effects of antenatal IL-1 exposure on postnatal development and investigated two IL-1 receptor antagonists, the competitive inhibitor anakinra (Kineret) and a potent noncompetitive inhibitor 101.10, for efficacy in blocking IL-1 actions. Antenatal exposure to IL-1ß induced Tnfa, Il6, Ccl2, Pghs2, and Mpges1 expression in placenta and fetal membranes, and it elevated amniotic fluid IL-1ß, IL-6, IL-8, and PGF2α, resulting in PTB and marked neonatal mortality. Surviving neonates had increased Il1b, Il6, Il8, Il10, Pghs2, Tnfa, and Crp expression in WBCs, elevated plasma levels of IL-1ß, IL-6, and IL-8, increased IL-1ß, IL-6, and IL-8 in fetal lung, intestine, and brain, and morphological abnormalities: e.g., disrupted lung alveolarization, atrophy of intestinal villus and colon-resident lymphoid follicle, and degeneration and atrophy of brain microvasculature with visual evoked potential anomalies. Late gestation treatment with 101.10 abolished these adverse outcomes, whereas Kineret exerted only modest effects and no benefit for gestation length, neonatal mortality, or placental inflammation. In a LPS-induced model of infection-associated PTB, 101.10 prevented PTB, neonatal mortality, and fetal brain inflammation. There was no substantive deviation in postnatal growth trajectory or adult body morphometry after antenatal 101.10 treatment. The results implicate IL-1 as an important driver of neonatal morbidity in PTB and identify 101.10 as a safe and effective candidate therapeutic.


Subject(s)
Brain/immunology , Fetal Development/drug effects , Inflammation/immunology , Interleukin-1beta/immunology , Placenta/immunology , Pregnancy/immunology , Premature Birth/immunology , Animals , Animals, Newborn , Brain/drug effects , Disease Models, Animal , Female , Humans , Inflammation/drug therapy , Inflammation Mediators/metabolism , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1beta/antagonists & inhibitors , Lipopolysaccharides/immunology , Mice , Mice, Inbred C57BL , Peptides/therapeutic use , Placenta/drug effects , Premature Birth/drug therapy
11.
Am J Obstet Gynecol ; 216(1): 60.e1-60.e17, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27615440

ABSTRACT

BACKGROUND: Uterine inflammatory processes trigger prolabor pathways and orchestrate on-time labor onset. Although essential for successful labor, inflammation needs to be regulated to avoid uncontrolled amplification and resolve postpartum. During labor, myometrial smooth muscle cells generate ATP mainly via anaerobic glycolysis, resulting in accumulation of lactate. Aside from its metabolic function, lactate has been shown to activate a G protein-coupled receptor, GPR81, reported to regulate inflammation. We therefore hypothesize that lactate produced during labor may act via GPR81 in the uterus to exert in a feedback manner antiinflammatory effects, to resolve or mitigate inflammation. OBJECTIVE: We sought to investigate the role of lactate produced during labor and its receptor, GPR81, in regulating inflammation in the uterus. STUDY DESIGN: We investigated the expression of GPR81 in the uterus and the pharmacological role of lactate acting via GPR81 during labor, using shRNA-GPR81 and GPR81-/- mice. RESULTS: (1) Uterine lactate levels increased substantially from 2 to 9 mmol/L during labor. (2) Immunohistological analysis revealed expression of GPR81 in the uterus with high expression in myometrium. (3) GPR81 expression increased during gestation, and peaked near labor. (4) In primary myometrial smooth muscle cell and ex vivo uteri from wild-type mice, lactate decreased interleukin-1ß-induced transcription of key proinflammatory Il1b, Il6, Ccl2, and Pghs2; suppressive effects of lactate were not observed in cells and tissues from GPR81-/- mice. (5) Conversely, proinflammatory gene expression was augmented in the uterus at term in GPR81-/- mice and wild-type mice treated intrauterine with lentiviral-encoded shRNA-GPR81; GPR81 silencing also induced proinflammatory gene transcription in the uterus when labor was induced by endotoxin (lipopolysaccharide). (6) Importantly, administration to pregnant mice of a metabolically stable specific GPR81 agonist, 3,5-dihydroxybenzoic acid, decreased endotoxin-induced uterine inflammation, preterm birth, and associated neonatal mortality. CONCLUSION: Collectively, our data uncover a novel link between the anaerobic glycolysis and the control of uterine inflammation wherein the high levels of lactate produced during labor act on uterine GPR81 to down-regulate key proinflammatory genes. This discovery may represent a novel feedback mechanism to regulate inflammation during labor, and conveys a potential rationale for the use of GPR81 agonists to attenuate inflammation and resulting preterm birth.


Subject(s)
Inflammation , Labor, Obstetric/immunology , Lactic Acid/immunology , Myometrium/immunology , Receptors, G-Protein-Coupled/genetics , Animals , Chemokine CCL2/drug effects , Chemokine CCL2/genetics , Cyclooxygenase 2/drug effects , Cyclooxygenase 2/genetics , Female , Hydroxybenzoates/pharmacology , Immunohistochemistry , In Vitro Techniques , Interleukin-1beta/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/pharmacology , Interleukin-6/genetics , Labor, Obstetric/metabolism , Lactic Acid/metabolism , Lactic Acid/pharmacology , Mice, Knockout , Myometrium/metabolism , Pregnancy , RNA, Small Interfering , Receptors, G-Protein-Coupled/immunology , Resorcinols/pharmacology , Uterus/immunology , Uterus/metabolism
12.
Acta Paediatr ; 105(12): 1421-1433, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27620714

ABSTRACT

Retinopathy of prematurity (ROP) is a multifactorial disease and the main cause of visual impairment and blindness in premature neonates. The inner retina has been considered the primary region affected in ROP, but choroidal vascular degeneration and progressive outer retinal dysfunctions have also been observed. This review focuses on observations regarding neurovascular dysfunctions in both the inner and outer immature retina, the mechanisms and the neuronal-derived factors implicated in the development of ROP, as well potential therapeutic avenues for this disorder. CONCLUSION: Alterations in the neurovascular integrity of the inner and outer retina contribute to the development of ROP.


Subject(s)
Retinopathy of Prematurity/etiology , Animals , Humans , Neovascularization, Pathologic , Retinal Degeneration , Retinal Vein/embryology , Retinopathy of Prematurity/physiopathology , Retinopathy of Prematurity/therapy
13.
Biol Reprod ; 95(3): 72, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27512149

ABSTRACT

Uterine labor requires the conversion of a quiescent (propregnancy) uterus into an activated (prolabor) uterus, with increased sensitivity to endogenous uterotonic molecules. This activation is induced by stressors, particularly inflammation in term and preterm labor. Neuromedin U (NmU) is a neuropeptide known for its uterocontractile effects in rodents. The objective of the study was to assess the expression and function of neuromedin U receptor 2 (NmU-R2) and its ligands NmU and the more potent neuromedin S (NmS) in gestational tissues, and the possible implication of inflammatory stressors in triggering this system. Our data show that NmU and NmS are uterotonic ex vivo in murine tissue, and they dose-dependently trigger labor by acting specifically via NmU-R2. Expression of NmU-R2, NmU, and NmS is detected in murine and human gestational tissues by immunoblot, and the expression of NmS in placenta and of NmU-R2 in uterus increases considerably with gestation age and labor, which is associated with amplified NmU-induced uterocontractile response in mice. NmU- and NmS-induced contraction is associated with increased NmU-R2-coupled Ca++ transients, and Akt and Erk activation in murine primary myometrial smooth muscle cells (mSMCs), which are potentiated with gestational age. NmU-R2 is upregulated in vitro in mSMCs and in vivo in uterus in response to proinflammatory interleukin 1beta (IL1beta), which is associated with increased NmU-induced uterocontractile response and Ca++ transients in murine and human mSMCs; additionally, placental NmS is markedly upregulated in vivo in response to IL1beta. In human placenta at term, immunohistological analysis revealed NmS expression primarily in cytotrophoblasts; furthermore, stimulation with lipopolysaccharide (LPS; Gram-negative endotoxin) markedly upregulates NmS expression in primary human cytotrophoblasts isolated from term placentas. Correspondingly, decidua of women with clinical signs of infection who delivered preterm display significantly higher expression of NmS compared with those without infection. Importantly, in vivo knockdown of NmU-R2 prevents LPS-triggered preterm birth in mice and the associated neonatal mortality. Altogether, our data suggest a critical role for NmU-R2 and its ligands NmU and NmS in preterm labor triggered by infection. We hereby identify NmU-R2 as a relevant target for preterm birth.

14.
J Immunol ; 195(7): 3402-15, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26304990

ABSTRACT

Preterm birth (PTB) is firmly linked to inflammation regardless of the presence of infection. Proinflammatory cytokines, including IL-1ß, are produced in gestational tissues and can locally upregulate uterine activation proteins. Premature activation of the uterus by inflammation may lead to PTB, and IL-1 has been identified as a key inducer of this condition. However, all currently available IL-1 inhibitors are large molecules that exhibit competitive antagonism properties by inhibiting all IL-1R signaling, including transcription factor NF-κB, which conveys important physiological roles. We hereby demonstrate the efficacy of a small noncompetitive (all-d peptide) IL-1R-biased ligand, termed rytvela (labeled 101.10) in delaying IL-1ß-, TLR2-, and TLR4-induced PTB in mice. The 101.10 acts without significant inhibition of NF-κB, and instead selectively inhibits IL-1R downstream stress-associated protein kinases/transcription factor c-jun and Rho GTPase/Rho-associated coiled-coil-containing protein kinase signaling pathways. The 101.10 is effective at decreasing proinflammatory and/or prolabor genes in myometrium tissue and circulating leukocytes in all PTB models independently of NF-κB, undermining NF-κB role in preterm labor. In this work, biased signaling modulation of IL-1R by 101.10 uncovers a novel strategy to prevent PTB without inhibiting NF-κB.


Subject(s)
Inflammation/immunology , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Peptides/pharmacology , Premature Birth/prevention & control , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Cell Line , Female , Interleukin-1beta/immunology , Mice , Myometrium/metabolism , NF-kappa B/metabolism , Pregnancy , Receptors, Interleukin-1/antagonists & inhibitors , Toll-Like Receptor 2/immunology , Toll-Like Receptor 4/immunology , Uterus/immunology , rho GTP-Binding Proteins/antagonists & inhibitors , rho-Associated Kinases/antagonists & inhibitors
15.
Arterioscler Thromb Vasc Biol ; 33(8): 1881-91, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23766263

ABSTRACT

OBJECTIVE: Proinflammatory cytokines contribute to the development of retinal vasculopathies. However, the role of these factors and the mechanisms by which they elicit their effects in retina are not known. We investigated whether activated microglia during early stages of ischemic retinopathy produces excessive interleukin-1ß (IL-1ß), which elicits retinal microvascular degeneration not directly but rather by triggering the release of the proapoptotic/repulsive factor semaphorin-3A (Sema3A) from neurons. APPROACH AND RESULTS: Sprague Dawley rats subjected to retinopathy induced by hyperoxia (80% O2; O2-induced retinopathy) exhibited retinal vaso-obliteration associated with microglial activation, NLRP3 upregulation, and IL-1ß and Sema3A release; IL-1ß was mostly generated by microglia. Intraperitoneal administration of IL-1 receptor antagonists (Kineret, or rytvela [101.10]) decreased these effects and enhanced retinal revascularization; knockdown of Sema3A resulted in microvessel preservation and, conversely, administration of IL-1ß caused vaso-obliteration. In vitro, IL-1ß derived from activated primary microglial cells, cultured under hyperoxia, stimulated the release of Sema3A in retinal ganglion cells-5, which in turn induced apoptosis of microvascular endothelium; antagonism of IL-1 receptor decreased microglial activation and on retinal ganglion cells-5 abolished the release of Sema3A inhibiting ensuing endothelial cell apoptosis. IL-1ß was not directly cytotoxic to endothelial cells. CONCLUSIONS: Our findings suggest that in the early stages of O2-induced retinopathy, retinal microglia are activated to produce IL-1ß, which sustains the activation of microglia and induces microvascular injury through the release of Sema3A from adjacent neurons. Interference with IL-1 receptor or Sema3A actions preserves the microvascular bed in ischemic retinopathies and, consequently, decreases ensued pathological preretinal neovascularization.


Subject(s)
Interleukin-1beta/metabolism , Ischemia/pathology , Microglia/pathology , Retinal Diseases/pathology , Retinitis/pathology , Semaphorin-3A/metabolism , Animals , Antirheumatic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/immunology , Carrier Proteins , Endothelial Cells/immunology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Knockdown Techniques , Hyperoxia/immunology , Hyperoxia/metabolism , Hyperoxia/pathology , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/immunology , Ischemia/drug therapy , Ischemia/immunology , Microcirculation/physiology , Microglia/immunology , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress/drug effects , Oxidative Stress/immunology , Peptides/pharmacology , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Receptors, Cytoplasmic and Nuclear/immunology , Receptors, Cytoplasmic and Nuclear/metabolism , Retinal Diseases/drug therapy , Retinal Diseases/immunology , Retinal Ganglion Cells/immunology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Retinitis/drug therapy , Retinitis/immunology , Semaphorin-3A/genetics , Semaphorin-3A/immunology
16.
Am J Physiol Regul Integr Comp Physiol ; 304(1): R10-22, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23152113

ABSTRACT

Acute renal failure (ARF) is a serious medical complication characterized by an abrupt and sustained decline in renal function. Despite significant advances in supportive care, there is currently no effective treatment to restore renal function. PGE(2) is a lipid hormone mediator abundantly produced in the kidney, where it acts locally to regulate renal function; several studies suggest that modulating EP(4) receptor activity could improve renal function following kidney injury. An optimized peptidomimetic ligand of EP(4) receptor, THG213.29, was tested for its efficacy to improve renal function (glomerular filtration rate, renal plasma flow, and urine output) and histological changes in a model of ARF induced by either cisplatin or renal artery occlusion in Sprague-Dawley rats. THG213.29 modulated PGE(2)-binding dissociation kinetics, indicative of an allosteric binding mode. Consistently, THG213.29 antagonized EP(4)-mediated relaxation of piglet saphenous vein rings, partially inhibited EP(4)-mediated cAMP production, but did not affect Gα(i) activation or ß-arrestin recruitment. In vivo, THG213.29 significantly improved renal function and histological changes in cisplatin- and renal artery occlusion-induced ARF models. THG213.29 increased mRNA expression of heme-oxygenase 1, Bcl2, and FGF-2 in renal cortex; correspondingly, in EP(4)-transfected HEK293 cells, THG213.29 augmented FGF-2 and abrogated EP(4)-dependent overexpression of inflammatory IL-6 and of apoptotic death domain-associated protein and BCL2-associated agonist of cell death. Our results demonstrate that THG213.29 represents a novel class of diuretic agent with noncompetitive allosteric modulator effects on EP(4) receptor, resulting in improved renal function and integrity following acute renal failure.


Subject(s)
Acute Kidney Injury/drug therapy , Kidney/drug effects , Kidney/physiology , Oligopeptides/therapeutic use , Receptors, Prostaglandin E, EP4 Subtype/agonists , Recovery of Function/drug effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Animals , Cisplatin/adverse effects , Cyclic AMP/biosynthesis , Disease Models, Animal , Dogs , Female , Fibroblast Growth Factor 2/biosynthesis , Glomerular Filtration Rate/drug effects , HEK293 Cells , Heme Oxygenase-1/biosynthesis , Humans , Interleukin-6/biosynthesis , Male , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Rats , Rats, Sprague-Dawley , Renal Plasma Flow/physiology , Saphenous Vein/drug effects , Saphenous Vein/pathology , Swine/physiology
18.
Invest Ophthalmol Vis Sci ; 52(8): 5376-86, 2011 Jul 23.
Article in English | MEDLINE | ID: mdl-21642627

ABSTRACT

PURPOSE: Vascular degeneration and the ensuing abnormal vascular proliferation are central to proliferative retinopathies. Given the metabolic discordance associated with these diseases, the authors explored the role of ghrelin and its growth hormone secretagogue receptor 1a (GHSR-1a) in proliferative retinopathy. METHODS: In a rat model of oxygen-induced retinopathy (OIR), the contribution of ghrelin and GHSR-1a was investigated using the stable ghrelin analogs [Dap3]-ghrelin and GHRP6 and the GSHR-1a antagonists JMV-2959 and [D-Lys3]-GHRP-6. Plasma and retinal levels of ghrelin were analyzed by ELISA, whereas retinal expression and localization of GHSR-1a were examined by immunohistochemistry and Western blot analysis. The angiogenic and vasoprotective properties of ghrelin and its receptor were further confirmed in aortic explants and in models of vaso-obliteration. RESULTS: Ghrelin is produced locally in the retina, whereas GHSR-1a is abundantly expressed in retinal endothelial cells. Ghrelin levels decrease during the vaso-obliterative phase and rise during the proliferative phase of OIR. Intravitreal delivery of [Dap3]-ghrelin during OIR significantly reduces retinal vessel loss when administered during the hyperoxic phase. Conversely, during the neovascular phase, ghrelin promotes pathologic angiogenesis through the activation of GHSR-1a. These angiogenic effects were confirmed ex vivo in aortic explants. CONCLUSIONS: New roles were disclosed for the ghrelin-GHSR-1a pathway in the preservation of retinal vasculature during the vaso-obliterative phase of OIR and during the angiogenic phase of OIR. These findings suggest that the ghrelin-GHSR-1a pathway can exert opposing effects on retinal vasculature, depending on the phase of retinopathy, and thus holds therapeutic potential for proliferative retinopathies.


Subject(s)
Endothelium, Vascular/drug effects , Ghrelin/pharmacology , Neovascularization, Physiologic/drug effects , Receptors, Ghrelin/metabolism , Retinal Neovascularization/etiology , Retinal Vessels/physiology , Animals , Animals, Newborn , Blotting, Western , Cell Culture Techniques , Cell Proliferation/drug effects , Disease Models, Animal , Endothelium, Vascular/metabolism , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique, Indirect , Humans , Infant, Newborn , Insulin-Like Growth Factor I/metabolism , Intravitreal Injections , Oxidative Stress , Oxygen/toxicity , Rats , Rats, Sprague-Dawley , Receptors, Ghrelin/antagonists & inhibitors , Retinal Neovascularization/metabolism , Retinal Neovascularization/pathology , Retinopathy of Prematurity/chemically induced , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...