Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Med Ther ; 23(1): 43, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36765341

ABSTRACT

BACKGROUND: The phytochemical study of medicinal plants is rapidly gaining popularity with many pharmacologic effects. This study aims to determine the antioxidant capacity as well as anticancer and antimigration activities of Clear belongs Plus extract (CBL-P) which consisted of five medicinal plants namely, Alpinia galanga, Piper nigrum, Citrus aurantifolia, Tiliacora triandra, and Cannabis sativa on human colon cancer cells SW620 and HCT116 cell lines, and human non-small cell lung cancer cells A549 and NCI-H460 cell lines. METHODS: In this study the dried-plant powder was extracted using 90% ethanol. Additionally, CBL-P was studied antioxidative activity via DPPH and ABTS assays and anti-inflammatory activities using nitric oxide assay using Griess reaction. Antiproliferation and antimigration of CBL-P were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and scratch assay. RESULTS: The results showed that CBL-P had potent antiproliferative activity with IC50 values in a concentration- and time-dependent manners for all four cell lines. CBL-P also possessed potent antimigration activity against all studied cancer cells. CBL-P demonstrated antimigration activity on four different types of cancer cells (A549, NCI-H460, HCT116, and SW620) after 48 h of incubation, with the greatest effect seen at the highest concentration tested (15 µg/mL) in A549 cells (10.23% of wound closure) and NCI-H460 cells (9.16% of wound closure). CBL-P was also effective in reducing migration in HCT116 and SW620 cells, with a range of closure area from 10-50%. In addition, CBL-P had antioxidant activity with IC50 values of 8.549 ± 0.241 mg/mL and 2.673 ± 0.437 mg/mL for DPPH and ABTS assays, respectively. CBL-P also showed anti-inflammatory activity with the best inhibitory activity on NO production at a concentration of 40 µg/mL. CONCLUSION: In conclusion, the mixture extract possessed antioxidant and anti-inflammatory activity. Furthermore, the mixture plant extract significantly exhibited antiproliferative and antimigration activities on SW620, HCT116, A549, and NCI-H460 cells (P ≤ 0.05). Taken together, our results suggest that medicinal plants may have synergistic effects that could potentially enhance the effectiveness of cancer treatment when used as adjuvants. These findings provide a solid scientific foundation for future efforts to explore the mechanism of action.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Plant Extracts , Plants, Medicinal , Humans , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Nitric Oxide , Plant Extracts/pharmacology , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology
2.
Article in English | MEDLINE | ID: mdl-36452140

ABSTRACT

Cholangiocarcinoma (CCA) is a very aggressive tumor. The development of a new therapeutic drug for CCA is required. This study aims to evaluate the antitumor effect of ∆9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana (Cannabis sativa), and cannabinol (CBN), a minor, low-psychoactive cannabinoid, on CCA cells and xenograft mice. THC and CBN were isolated, and their identities were confirmed by comparing 1H- and 13C-NMR spectra and mass spectra with a database. Cell proliferation, cell migration, and cell apoptosis assays were performed in HuCCT1 human CCA cells treated with THC or CBN. The phosphorylation of signaling molecules in HuCCT1 cells was detected. To determine the effects of THC and CBN in an animal model, HuCCT1 cells were inoculated subcutaneously into nude mice. After the tumors reached an appropriate size, the mice were treated with THC or CBN for 21 days. Tumor volumes were monitored and calculated. The 1H- and 13C-NMR data of THC and CBN were almost identical to those reported in the literature. THC and CBN significantly inhibited cell proliferation and migration and induced apoptosis in HuCCT1 cells. The phosphorylation of AKT, GSK-3α/ß, and ERK1/2 decreased in HuCCT1 cells treated with THC or CBN. CCA xenograft mice treated with THC showed significantly slower tumor progression and smaller tumor volumes than control mice. THC and CBN induced apoptosis in CCA by inhibiting the AKT and MAPK pathways. These findings provide a strong rationale for THC and CBN as therapeutic options for CCA.

3.
An Acad Bras Cienc ; 91(3): e20190676, 2019.
Article in English | MEDLINE | ID: mdl-31618414

ABSTRACT

The aim of this work was to optimize a maceration condition of cannabis (Cannabis sativa L.). A circumscribed central composite experimental design was applied in this work. Temperature and time were varied from 40-80 °C and 30-90 min, respectively. The three responses (i.e., extraction yield, cannabidiol content, and Δ9- tetrahydrocannabinol content) were predicted by computer software. The yield was high when cannabis was macerated using ethanol at high temperature and long duration time. While cannabidiol and Δ9- tetrahydrocannabinol content was high when macerating at a low heating temperature and short duration time. The optimal condition provided the simultaneous high of cannabidiol and Δ9- tetrahydrocannabinol content was 40 °C for 30 min. The prediction was accurate due to low percent error. This optimal condition could be used as a guide for maceration of cannabis to obtain the extract containing a high content of cannabidiol and Δ9- tetrahydrocannabinol.


Subject(s)
Cannabidiol/analysis , Cannabis/chemistry , Dronabinol/isolation & purification , Plant Extracts/analysis , Chromatography, High Pressure Liquid , Dronabinol/analysis , Methods , Temperature , Time Factors
4.
AAPS PharmSciTech ; 16(1): 171-81, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25233803

ABSTRACT

The current work prepared chitosan/hydroxypropyl methylcellulose (HPMC) blends and studied the possibility of chitosan/HPMC blended patches for Zingiber cassumunar Roxb. The blended patches without/with crude Z. cassumunar oil were prepared by homogeneously mixing the 3.5% w/v of chitosan solution and 20% w/v of HPMC solution, and glycerine was used as plasticizer. Then, they were poured into Petri dish and produced the blended patches in hot air oven at 70 ± 2°C. The blended patches were tested and evaluated by the physicochemical properties: moisture uptake, swelling ratio, erosion, porosity, Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction, and photographed the surface and cross-section morphology under SEM technique. Herbal blended patches were studied by the in vitro release and skin permeation of active compound D. The blended patches could absorb the moisture and became hydrated patches that occurred during the swelling of blended patches. They were eroded and increased by the number of porous channels to pass through out for active compound D. In addition, the blended patches indicated the compatibility of the blended ingredients and homogeneous smooth and compact. The blended patches made from chitosan/HPMC blends provide a controlled release and skin permeation behavior of compound D. Thus, the blended patches could be suitably used for herbal medicine application.


Subject(s)
Hypromellose Derivatives/chemistry , Plant Oils/administration & dosage , Plant Oils/pharmacokinetics , Skin Absorption/physiology , Transdermal Patch , Zingiberales/chemistry , Administration, Cutaneous , Animals , Chitosan/chemistry , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemical synthesis , Diffusion , Drug Compounding/methods , Drug Stability , Equipment Design , Equipment Failure Analysis , In Vitro Techniques , Plant Oils/chemistry , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...