Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 81(1): 215, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739166

ABSTRACT

Down syndrome (DS) is a genetic disease characterized by a supernumerary chromosome 21. Intellectual deficiency (ID) is one of the most prominent features of DS. Central nervous system defects lead to learning disabilities, motor and language delays, and memory impairments. At present, a prenatal treatment for the ID in DS is lacking. Subcutaneous administration of synthetic preimplantation factor (sPIF, a peptide with a range of biological functions) in a model of severe brain damage has shown neuroprotective and anti-inflammatory properties by directly targeting neurons and microglia. Here, we evaluated the effect of PIF administration during gestation and until weaning on Dp(16)1Yey mice (a mouse model of DS). Possible effects at the juvenile stage were assessed using behavioral tests and molecular and histological analyses of the brain. To test the influence of perinatal sPIF treatment at the adult stage, hippocampus-dependent memory was evaluated on postnatal day 90. Dp(16)1Yey pups showed significant behavioral impairment, with impaired neurogenesis, microglial cell activation and a low microglial cell count, and the deregulated expression of genes linked to neuroinflammation and cell cycle regulation. Treatment with sPIF restored early postnatal hippocampal neurogenesis, with beneficial effects on astrocytes, microglia, inflammation, and cell cycle markers. Moreover, treatment with sPIF restored the level of DYRK1A, a protein that is involved in cognitive impairments in DS. In line with the beneficial effects on neurogenesis, perinatal treatment with sPIF was associated with an improvement in working memory in adult Dp(16)1Yey mice. Perinatal treatment with sPIF might be an option for mitigating cognitive impairments in people with DS.


Subject(s)
Disease Models, Animal , Down Syndrome , Neurogenesis , Animals , Down Syndrome/drug therapy , Down Syndrome/pathology , Down Syndrome/metabolism , Down Syndrome/complications , Down Syndrome/genetics , Neurogenesis/drug effects , Mice , Female , Pregnancy , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/drug effects , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Dyrk Kinases , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Male , Cognition Disorders/drug therapy , Cognition Disorders/pathology
2.
Arch Pediatr ; 31(3): 205-208, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538464

ABSTRACT

Congenital central hypoventilation syndrome (CCHS) is an autosomal dominant disease that is caused by heterozygous mutations in the paired-like homeobox 2B gene (PHOX2B). Madani et al. described an abnormally high degree of not only central apnea but also obstructive and mixed apnea in Phox2b27Ala/+newborn mice. Newborns with CCHS must undergo polysomnography for obstructive respiratory events in order to guide the optimal ventilation strategy if oxygen desaturation, bradycardia, and malaise persist under noninvasive ventilation. Newborns and infants with CCHS must be systematically tested for obstructive apnea, especially in cases of inefficient noninvasive ventilation.


Subject(s)
Airway Obstruction , Hypoventilation , Sleep Apnea, Central , Sleep Apnea, Obstructive , Animals , Child , Humans , Infant , Infant, Newborn , Mice , Airway Obstruction/etiology , Homeodomain Proteins/genetics , Hypoventilation/congenital , Mutation , Sleep Apnea, Central/diagnosis , Sleep Apnea, Central/genetics , Sleep Apnea, Central/therapy , Transcription Factors/genetics
3.
Am J Respir Crit Care Med ; 204(10): 1200-1210, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34478357

ABSTRACT

Rationale: Congenital central hypoventilation syndrome (CCHS) is characterized by life-threatening sleep hypoventilation and is caused by PHOX2B gene mutations, most frequently the PHOX2B27Ala/+ mutation, with patients requiring lifelong ventilatory support. It is unclear whether obstructive apneas are part of the syndrome. Objectives: To determine if Phox2b27Ala/+ mice, which present the main symptoms of CCHS and die within hours after birth, also express obstructive apneas, and to investigate potential underlying mechanisms. Methods: Apneas were classified as central, obstructive, or mixed by using a novel system combining pneumotachography and laser detection of abdominal movement immediately after birth. Several respiratory nuclei involved in airway patency were examined by immunohistochemistry and electrophysiology in brainstem-spinal cord preparations. Measurements and Main Results: The median (interquartile range) of obstructive apnea frequency was 2.3 (1.5-3.3)/min in Phox2b27Ala/+ pups versus 0.6 (0.4-1.0)/min in wild types (P < 0.0001). Obstructive apnea duration was 2.7 seconds (2.3-3.9) in Phox2b27Ala/+ pups versus 1.7 seconds (1.1-1.9) in wild types (P < 0.0001). Central and mixed apneas presented similar significant differences. In Phox2b27Ala/+ preparations, the hypoglossal nucleus had fewer (P < 0.05) and smaller (P < 0.01) neurons, compared with wild-type preparations. Importantly, coordination of phrenic and hypoglossal motor activities was disrupted, as evidenced by the longer and variable delay of hypoglossal activity with respect to phrenic activity onset (P < 0.001). Conclusions: The Phox2b27Ala/+ mutation predisposed pups not only to hypoventilation and central apneas, but also to obstructive and mixed apneas, likely because of hypoglossal dysgenesis. These results thus demand attention toward obstructive events in infants with CCHS.


Subject(s)
Hypoventilation/congenital , Hypoventilation/diagnosis , Hypoventilation/genetics , Hypoventilation/physiopathology , Sleep Apnea, Central/congenital , Sleep Apnea, Central/diagnosis , Sleep Apnea, Central/genetics , Sleep Apnea, Central/physiopathology , Animals , Animals, Newborn , Disease Models, Animal , Homeodomain Proteins/genetics , Humans , Mice , Mutation , Transcription Factors/genetics
4.
J Sleep Res ; 30(5): e13337, 2021 10.
Article in English | MEDLINE | ID: mdl-33880823

ABSTRACT

A combination of noradrenergic and antimuscarinic agents reduces the apnea-hypopnea index (AHI) in adult patients with obstructive sleep apnoea (OSA) via reduced upper airway collapsibility, suggesting that a shift in the sympathovagal balance improves OSA. The objectives of our present case-control study were to assess heart rate variability (HRV) indices in the stages of sleep in children with and without OSA to evaluate OSA-induced sleep HRV modifications and to assess whether increased collapsibility measured during wakefulness is associated with reduced sympathetic activity during non-rapid eye movement (NREM) sleep. Three groups of 15 children were matched by sex, age, z-score of body mass index and ethnicity: non-OSA (obstructive AHI [OAHI] <2 events/hr), mild (OAHI ≥2 to <5 events/hr) or moderate-severe (OAHI ≥5 events/hr) OSA. Pharyngeal compliance was measured during wakefulness using acoustic pharyngometry. HRV indices (time and frequency domain variables) were calculated on 5-min electrocardiography recordings from polysomnography during wakefulness, NREM and REM sleep in periods free of any event. As compared to children without OSA, those with OSA (n = 30) were characterised by increased compliance and no physiological parasympathetic tone increase in REM sleep. Children with increased pharyngeal compliance (n = 21) had a higher OAHI due to higher AHI in NREM sleep, whereas their sympathetic tone was lower than that of those with normal compliance (n = 24). In conclusion, children with increased pharyngeal compliance exhibit decreased sympathetic tone associated with increased AHI in NREM sleep. Therapeutics directed at sympathovagal balance modifications should be tested in childhood OSA.


Subject(s)
Sleep Apnea, Obstructive , Case-Control Studies , Cross-Sectional Studies , Heart Rate , Humans , Polysomnography
SELECTION OF CITATIONS
SEARCH DETAIL
...