Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Proc Natl Acad Sci U S A ; 120(2): e2123182120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36598942

ABSTRACT

Early-life experience enduringly sculpts thalamocortical (TC) axons and sensory processing. Here, we identify the very first synaptic targets that initiate critical period plasticity, heralded by altered cortical oscillations. Monocular deprivation (MD) acutely induced a transient (<3 h) peak in EEG γ-power (~40 Hz) specifically within the visual cortex, but only when the critical period was open (juvenile mice or adults after dark-rearing, Lynx1-deletion, or diazepam-rescued GAD65-deficiency). Rapid TC input loss onto parvalbumin-expressing (PV) inhibitory interneurons (but not onto nearby pyramidal cells) was observed within hours of MD in a TC slice preserving the visual pathway - again once critical periods opened. Computational TC modeling of the emergent γ-rhythm in response to MD delineated a cortical interneuronal gamma (ING) rhythm in networks of PV-cells bearing gap junctions at the start of the critical period. The ING rhythm effectively dissociated thalamic input from cortical spiking, leading to rapid loss of previously strong TC-to-PV connections through standard spike-timing-dependent plasticity rules. As a consequence, previously silent TC-to-PV connections could strengthen on a slower timescale, capturing the gradually increasing γ-frequency and eventual fade-out over time. Thus, ING enables cortical dynamics to transition from being dominated by the strongest TC input to one that senses the statistics of population TC input after MD. Taken together, our findings reveal the initial synaptic events underlying critical period plasticity and suggest that the fleeting ING accompanying a brief sensory perturbation may serve as a robust readout of TC network state with which to probe developmental trajectories.


Subject(s)
Gamma Rhythm , Interneurons , Mice , Animals , Gamma Rhythm/physiology , Interneurons/physiology , Pyramidal Cells/physiology , Gap Junctions , Parvalbumins , Neuronal Plasticity/physiology
3.
United European Gastroenterol J ; 2(4): 279-87, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25083285

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the leading cause of death amongst cirrhotic patients. Its diagnosis and discrimination from non-HCC malignant lesions in cirrhosis includes contrast enhanced computed tomography (CECT), contrast enhanced magnetic resonance imaging (CEMRI), or, in selected cases, liver biopsy. The role of contrast-enhanced ultrasonography (CEUS) is still controversial. AIMS: To evaluate whether, by selecting an appropriate 'time to wash-out' cut-off value, CEUS capability of discriminating between HCC and non-HCC malignancies in cirrhotic patients may be enhanced. METHODS: We enrolled 282 cirrhotic patients who underwent CEUS at our institute, from January 2008 to January 2012, for focal liver lesions (FLLs) detected at ultrasound (US). We used liver biopsy and subsequent histological evaluation as the gold standard for correct classification of FLLs. We calculated the area under receiver operator characteristic curves for CEUS to distinguish patients with HCC from those with non-HCC malignancies. The best 'time to wash-out' cut-off values were selected. RESULTS: HISTOLOGICAL DIAGNOSIS OF FLLS WAS AS FOLLOWS: 34 benign lesions (i.e. 25 regenerative nodules and 9 dysplastic nodules) and 248 malignant lesions (223 well-to-moderately differentiated HCCs; 7 poorly-differentiated HCCs; 5 intrahepatic colangiocellular carcinomas (ICCs); 5 primary non-Hodgkin B-cell lymphomas (NHBLs); and 8 metastatic liver tumors). A time to wash-out > 55 s identified patients with HCC with the highest level of accuracy (92.7%). Similarly, a time to wash-out ≤ 55 s correctly identified the vast majority of the non-HCC malignancies (100% sensitivity, 98.2% specificity and diagnostic accuracy of 98.3%). CONCLUSIONS: CEUS is an accurate and safe procedure for discriminating FLLs in cirrhotic patients, especially when a cut-off time to wash-out of 55 s is chosen as a reference value.

4.
Front Cell Neurosci ; 7: 63, 2013.
Article in English | MEDLINE | ID: mdl-23641199

ABSTRACT

Fluoxetine (Prozac), an antidepressant known to selectively inhibit serotonin reuptake, is widely used to treat mood disorders in women suffering from depression during pregnancy and postpartum period. Several lines of evidence suggest that this drug, which crosses the human placenta and is secreted into milk during lactation, exerts its action not only by interfering with serotoninergic but also with GABAergic transmission. GABA is known to play a crucial role in the construction of neuronal circuits early in postnatal development. The immature hippocampus is characterized by an early type of network activity, the so-called Giant Depolarizing Potentials (GDPs), generated by the synergistic action of glutamate and GABA, both depolarizing and excitatory. Here we tested the hypothesis that fluoxetine may interfere with GABAergic signaling during the first postnatal week, thus producing harmful effects on brain development. At micromolar concentrations fluoxetine severely depressed GDPs frequency (IC50 22 µM) in a reversible manner and independently of its action on serotonin reuptake. This effect was dependent on a reduced GABAergic (but not glutamatergic) drive to principal cells most probably from parvalbumin-positive fast spiking neurons. Cholecystokinin-positive GABAergic interneurons were not involved since the effects of the drug persisted when cannabinoid receptors were occluded with WIN55,212-2, a CB1/CB2 receptor agonist. Fluoxetine effects on GABAergic transmission were associated with a reduced firing rate of both principal cells and interneurons further suggesting that changes in network excitability account for GDPs disruption. This may have critical consequences on the functional organization and stabilization of neuronal circuits early in postnatal development.

5.
J Neurosci ; 33(7): 2973-83, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23407955

ABSTRACT

The cellular form of prion protein PrP(C) is highly expressed in the brain, where it can be converted into its abnormally folded isoform PrP(Sc) to cause neurodegenerative diseases. Its predominant synaptic localization suggests a crucial role in synaptic signaling. Interestingly, PrP(C) is developmentally regulated and its high expression in the immature brain could be instrumental in regulating neurogenesis and cell proliferation. Here, PrP(C)-deficient (Prnp(0/0)) mice were used to assess whether the prion protein is involved in synaptic plasticity processes in the neonatal hippocampus. To this aim, calcium transients associated with giant depolarizing potentials, a hallmark of developmental networks, were transiently paired with mossy fiber activation in such a way that the two events were coincident. While this procedure caused long-term potentiation (LTP) in wild-type (WT) animals, it caused long-term depression (LTD) in Prnp(0/0) mice. Induction of LTP was postsynaptic and required the activation of cAMP-dependent protein kinase A (PKA) signaling. The induction of LTD was presynaptic and relied on G-protein-coupled GluK1 receptor and protein lipase C. In addition, at emerging CA3-CA1 synapses in WT mice, but not in Prnp(0/0) mice, pairing Schaffer collateral stimulation with depolarization of CA1 principal cells induced LTP, known to be PKA dependent. Postsynaptic infusion of a constitutively active isoform of PKA catalytic subunit Cα into CA1 and CA3 principal cells in the hippocampus of Prnp(0/0) mice caused a persistent synaptic facilitation that was occluded by subsequent pairing. These data suggest that PrP(C) plays a crucial role in regulating via PKA synaptic plasticity in the developing hippocampus.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/physiology , Hippocampus/physiology , Neuronal Plasticity/physiology , PrPC Proteins/physiology , Synapses/physiology , Animals , CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/physiology , Cyclic AMP/physiology , Data Interpretation, Statistical , Electrophysiological Phenomena , GTP-Binding Proteins/physiology , Hippocampus/growth & development , Long-Term Potentiation/physiology , Mice , Mice, Knockout , Nerve Net/physiology , Patch-Clamp Techniques , Pyramidal Cells/physiology , Receptors, Kainic Acid/physiology , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/physiology
6.
Sci Rep ; 2: 285, 2012.
Article in English | MEDLINE | ID: mdl-22368777

ABSTRACT

Early in postnatal life, mossy fibres (MF), the axons of granule cells in the dentate gyrus, release GABA which is depolarizing and excitatory. Synaptic currents undergo spike-time dependent long-term depression (STD-LTD) regardless of the temporal order of stimulation (pre versus post and viceversa). Here we show that at P3 but not at P21, STD-LTD, induced by negative pairing, is mediated by endocannabinoids mobilized from the postsynaptic cell during spiking-induced membrane depolarization. By diffusing backward, endocannabinoids activate cannabinoid type-1 (CB1) receptors probably expressed on MF. Thus, STD-LTD was prevented by CB1 receptor antagonists and was absent in CB1-KO mice. Consistent with these data, in situ hybridization experiments revealed detectable level of CB1 mRNA in the granule cell layer at P3 but not at P21. These results indicate that CB1 receptors are transiently expressed on immature MF terminals where they counteract the enhanced neuronal excitability induced by the excitatory action of GABA.

7.
Adv Exp Med Biol ; 717: 11-26, 2011.
Article in English | MEDLINE | ID: mdl-21713663

ABSTRACT

Kainate receptors (KARs) are glutamate-gated ion channels assembled from various combinations of GluK1-GluK5 subunits with different physiological and pharmacological properties. In the hippocampus, KARs expressed at postsynaptic sites mediate a small component of excitatory postsynaptic currents while at presynaptic sites they exert a powerful control on transmitter release at both excitatory and inhibitory connections. KARs are developmentally regulated and play a key role in several developmental processes including neuronal migration, differentiation and synapse formation. Interestingly, they can signal through a canonical ionotropic pathway but also through a noncanonical modality involving pertussis toxin-sensitive G proteins and downstream signaling molecules.In this Chapter some of our recent data concerning the functional role of presynaptic KARs in regulation of transmitter release from immature mossy fiber terminals and in synaptic plasticity processes will be reviewed. Early in postnatal development, MFs release into their targeted neurons mainly GABA which is depolarizing and excitatory. Endogenous activation of GluK1 KARs localized on MF terminals by glutamate present in the extracellular space down regulates GABA release, leading sometimes to synapse silencing. The depressant effect of GluK1 on MF responses is mediated by a metabotropic process, sensitive to pertussis toxin and phospholipase C (PLC) along the transduction pathway downstream to G protein activation. Blocking PLC with the selective antagonist U73122, unmasks the potentiating effect of GluK1 on MF-evoked GABAergic currents, which probably depend on the ionotropic type of action of these receptors.In addition, GluK1 KARs dynamically regulate the direction of spike-time dependent plasticity, a particular form of Hebbian type of learning which consists in bidirectional modifications in synaptic strength according to the temporal order of pre and postsynaptic spiking. At immature MF-CA3 synapses pairing MF stimulation with postsynaptic spiking and vice versa induces long term depression of MF-evoked GABAergic currents. In the case of positive pairing synaptic depression can be switched into spike-time dependent potentiation by blocking GluK1 KARs with UBP 302. The depressant action exerted by GluK1 KARs on MF responses would prevent the excessive activation of the CA3 associative network by the excitatory action of GABA early in postnatal development.


Subject(s)
Hippocampus/metabolism , Receptors, Kainic Acid/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Down-Regulation , Hippocampus/growth & development , Humans
8.
J Neurosci ; 31(1): 34-45, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-21209187

ABSTRACT

GABA depolarizes immature neurons because of a high [Cl(-)](i) and orchestrates giant depolarizing potential (GDP) generation. Zilberter and coworkers (Rheims et al., 2009; Holmgren et al., 2010) showed recently that the ketone body metabolite DL-3-hydroxybutyrate (DL-BHB) (4 mM), lactate (4 mM), or pyruvate (5 mM) shifted GABA actions to hyperpolarizing, suggesting that the depolarizing effects of GABA are attributable to inadequate energy supply when glucose is the sole energy source. We now report that, in rat pups (postnatal days 4-7), plasma D-BHB, lactate, and pyruvate levels are 0.9, 1.5, and 0.12 mM, respectively. Then, we show that DL-BHB (4 mM) and pyruvate (200 µM) do not affect (i) the driving force for GABA(A) receptor-mediated currents (DF(GABA)) in cell-attached single-channel recordings, (2) the resting membrane potential and reversal potential of synaptic GABA(A) receptor-mediated responses in perforated patch recordings, (3) the action potentials triggered by focal GABA applications, or (4) the GDPs determined with electrophysiological recordings and dynamic two-photon calcium imaging. Only very high nonphysiological concentrations of pyruvate (5 mM) reduced DF(GABA) and blocked GDPs. Therefore, DL-BHB does not alter GABA signals even at the high concentrations used by Zilberter and colleagues, whereas pyruvate requires exceedingly high nonphysiological concentrations to exert an effect. There is no need to alter conventional glucose enriched artificial CSF to investigate GABA signals in the developing brain.


Subject(s)
Action Potentials/drug effects , Ketone Bodies/metabolism , Neurons/drug effects , Neurons/physiology , Pyruvic Acid/metabolism , gamma-Aminobutyric Acid/pharmacology , 3-Hydroxybutyric Acid/blood , 3-Hydroxybutyric Acid/pharmacology , Action Potentials/physiology , Animals , Animals, Newborn/blood , Bicuculline/pharmacology , Brain/cytology , Brain/growth & development , Bumetanide/pharmacology , Calcium/metabolism , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , Female , GABA-A Receptor Antagonists/pharmacology , In Vitro Techniques , Lactic Acid/blood , Male , Patch-Clamp Techniques/methods , Pyruvic Acid/pharmacology , Rats , Rats, Wistar , Signal Transduction/drug effects , Sodium Potassium Chloride Symporter Inhibitors/pharmacology
9.
J Neurosci ; 30(5): 1750-9, 2010 Feb 03.
Article in English | MEDLINE | ID: mdl-20130184

ABSTRACT

Presynaptic kainate receptors regulate synaptic transmission in several brain areas but are not known to have this action at immature mossy fiber (MF) terminals, which during the first week of postnatal life release GABA, which exerts into targeted cells a depolarizing and excitatory action. Here, we report that, during the first week of postnatal life, endogenous activation of GluK1 receptors by glutamate present in the extracellular space severely depresses MF-mediated GABAergic currents [GABA(A)-mediated postsynaptic currents (GPSCs)]. Activation of GluK1 receptors was prevented by treating the slices with enzymatic glutamate scavengers that enhanced the clearance of glutamate from the extracellular space. The depressant effect of GluK1 on MF-GPSCs was mediated by a metabotropic process sensitive to pertussis toxin. In the presence of U73122 (1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione), a selective inhibitor of phospholipase C, along the transduction pathway downstream to G-protein, GluK1 activation increased the probability of GABA release, thus unveiling the ionotropic action of this receptor. In line with this type of action, we found that GluK1 enhanced MF excitability by directly depolarizing MF terminals via calcium-permeable cation channels. Furthermore, GluK1 dynamically regulated the direction of spike time-dependent plasticity occurring by pairing MF stimulation with postsynaptic spiking and switched spike time-dependent potentiation into depression. The GluK1-induced depression of MF-GPSCs would prevent excessive activation of the CA3 associative network by the excitatory action of GABA and the emergence of seizures in the immature brain.


Subject(s)
Hippocampus/growth & development , Mossy Fibers, Hippocampal/metabolism , Receptors, Kainic Acid/metabolism , gamma-Aminobutyric Acid/metabolism , Action Potentials , Animals , Down-Regulation , Enzyme Activation , Glutamic Acid/metabolism , Neuronal Plasticity/physiology , Patch-Clamp Techniques , Pyramidal Cells/cytology , Pyramidal Cells/metabolism , Rats , Rats, Wistar
10.
Article in English | MEDLINE | ID: mdl-21423487

ABSTRACT

In this review some of the recent work carried out in our laboratory concerning the functional role of GABAergic signalling at immature mossy fibres (MF)-CA3 principal cell synapses has been highlighted. While in adulthood MF, the axons of dentate gyrus granule cells release onto CA3 principal cells and interneurons glutamate, early in postnatal life they release GABA, which exerts into targeted cells a depolarizing and excitatory action. We found that GABA(A)-mediated postsynaptic currents (MF-GPSCs) exhibited a very low probability of release, were sensitive to L-AP4, a group III metabotropic glutamate receptor agonist, and revealed short-term frequency-dependent facilitation. Moreover, MF-GPSCs were down regulated by presynaptic GABA(B) and kainate receptors, activated by spillover of GABA from MF terminals and by glutamate present in the extracellular medium, respectively. Activation of these receptors contributed to the low release probability and in some cases to synapses silencing. By pairing calcium transients, associated with network-driven giant depolarizing potentials or GDPs (a hallmark of developmental networks thought to represent a primordial form of synchrony between neurons), generated by the synergistic action of glutamate and GABA with MF activation increased the probability of GABA release and caused the conversion of silent synapses into conductive ones suggesting that GDPs act as coincident detector signals for enhancing synaptic efficacy. Finally, to compare the relative strength of CA3 pyramidal cell output in relation to their MF glutamatergic or GABAergic inputs in adulthood or in postnatal development, respectively, a realistic model was constructed taking into account different biophysical properties of these synapses.

11.
Proc Natl Acad Sci U S A ; 93(25): 14862-7, 1996 Dec 10.
Article in English | MEDLINE | ID: mdl-8962146

ABSTRACT

The genome of the Kaposi sarcoma-associated herpesvirus (KSHV or HHV8) was mapped with cosmid and phage genomic libraries from the BC-1 cell line. Its nucleotide sequence was determined except for a 3-kb region at the right end of the genome that was refractory to cloning. The BC-1 KSHV genome consists of a 140.5-kb-long unique coding region flanked by multiple G + C-rich 801-bp terminal repeat sequences. A genomic duplication that apparently arose in the parental tumor is present in this cell culture-derived strain. At least 81 ORFs, including 66 with homology to herpesvirus saimiri ORFs, and 5 internal repeat regions are present in the long unique region. The virus encodes homologs to complement-binding proteins, three cytokines (two macrophage inflammatory proteins and interleukin 6), dihydrofolate reductase, bcl-2, interferon regulatory factors, interleukin 8 receptor, neural cell adhesion molecule-like adhesin, and a D-type cyclin, as well as viral structural and metabolic proteins. Terminal repeat analysis of virus DNA from a KS lesion suggests a monoclonal expansion of KSHV in the KS tumor.


Subject(s)
Genes, Viral , Genome, Viral , Herpesvirus 8, Human/genetics , Sarcoma, Kaposi/virology , Base Sequence , Chromosome Mapping , Humans , Molecular Sequence Data
12.
Arch Intern Med ; 156(2): 202-4, 1996 Jan 22.
Article in English | MEDLINE | ID: mdl-8546554

ABSTRACT

BACKGROUND: Endemic Kaposi's sarcoma (KS) is a clinically and epidemiologically distinct human immunodeficiency virus negative form of KS occurring in Africa. Kaposi's sarcoma is now the most frequently reported cancer in some areas of Africa. OBJECTIVE: To determine if a KS-associated herpesvirus (KSHV) is present in both endemic HIV-seronegative and HIV-seropositive KS lesions from African patients. METHODS: Paraffin-embedded tissue specimens from Ugandan patients with KS and non-KS tumor control patients attending a university-based oncology clinic were examined in a blinded case-control study. Tissue DNA specimens were examined for detectable KSHV genome by nested polymerase chain reaction performed at two independent laboratories. RESULTS: We identified KSHV in 17 (85%) of 20 KS tissue specimens from HIV-seronegative patients and 22 (92%) of 24 KS tissue specimens from HIV-infected persons. Kaposi's sarcoma lesions from four HIV-infected persons and four HIV-seronegative persons were positive for KSHV. Unlike previous studies in North America and Europe, three (14%) of 22 non-KS cancer control patients' tissue specimens were also positive for KSHV that resulted in an overall odds ratio of 49.2 (95% confidence interval, 9.1 to 335) for detecting KSHV in KS lesions from patients in Uganda. CONCLUSION: As in North America and Europe, KSHV infection is strongly associated with both HIV-seropositive and HIV-seronegative KS in Africa. However, it is likely that infection with this virus is more highly prevalent in Uganda.


Subject(s)
HIV Seropositivity/complications , Herpesviridae/isolation & purification , Sarcoma, Kaposi/virology , Case-Control Studies , DNA, Viral/isolation & purification , HIV Seronegativity , Herpesviridae/genetics , Humans , Odds Ratio , Polymerase Chain Reaction , Single-Blind Method , Uganda
13.
J Med Chem ; 38(4): 715-24, 1995 Feb 17.
Article in English | MEDLINE | ID: mdl-7861419

ABSTRACT

To date the use of artificial neural networks (ANNs) in quantitative structure-activity relationship (QSAR) studies has been primarily concerned in comparing the predictive accuracy of the technique using known data sets where the data set parameters had been preselected and optimized for use with other statistical methods. Little effort has been directed at optimizing the input parameters for use with ANNs or exploring other potential strengths of ANNs. In this study, back-propagation ANNs and multilinear regression (MLR) were used to examine the QSAR between substituent constants and random noise at six positions on 57 1,4-benzodiazepin-2-ones (1,4-BZs) and their binding affinities (log IC50) for benzodiazepine GABAA receptor preparations. By using selective pruning and cross-validation techniques, it was found possible to use ANNs to indicate an optimum set of 10 input parameters from a choice of 48 which were then used to train back-propagation ANNs that best predicted the receptor binding affinity with a high correlation between known and predicted data sets. Using the optimum set of input parameters, three-layer ANNs performed no better than the two-layer ANNs which gave marginally better results than MLR. Using the trained ANNs to examine the individual parameters showed that increases in the lipophilicity and F polar value at position 7, F polar value at position 2', and dipole at position 1 on the molecule all enhanced receptor binding affinity of 1,4-BZ ligands. Increases in molar refractivity and resonance parameters at position 1, molar refractivity at positions 6' and 2', Hammet meta constant at position 3', and Hammet para constant at position 8 on the molecule all caused decreases in receptor binding affinity. By considering the optimal ANNs as pharmacophore models representing the internal physicochemical structure of the receptor site, it was found that they could be used to critically examine the properties of the receptor site.


Subject(s)
Neural Networks, Computer , Receptors, GABA-A/metabolism , Binding Sites , Ligands , Predictive Value of Tests , Structure-Activity Relationship
14.
J Pharm Sci ; 81(5): 408-12, 1992 May.
Article in English | MEDLINE | ID: mdl-1403669

ABSTRACT

Radiopharmaceuticals have great potential in the early detection of human tumors. Three potential 99mTc-labeled platinum compounds based on cisplatin have been synthesized and tested in tumored mice. This report presents the analysis of the disposition data obtained after a single intravenous injection with an empirical, physiologically based pharmacokinetic model. The radioactivity of each radiopharmaceutical after administration was measured in blood, urine, and 15 tissues, including tumor. Parameters included in the model were tissue volumes (experimentally determined), tissue blood flows (determined from literature values), tissue:blood extraction ratios (determined by nonlinear least-squares regression with MULTI-FORTE), and clearance terms (also determined by nonlinear least-squares regression). Data were weighted by the reciprocal of the square of the observed values. Good fits to the experimental data were obtained. As expected, the compound producing the best tumor:blood profile (3) also had the highest tumor extraction ratio (6.2 versus 2.0 and 1.3 for 1 and 2, respectively). Total body clearance values for the radioactivity associated with the three compounds 1-3 were calculated to be 0.09, 0.04, and 0.016 mL/min, respectively. Analysis of data with such an empirical, physiologically based model may assist future development of suitable tumor-imaging agents.


Subject(s)
Organotechnetium Compounds/pharmacokinetics , Sarcoma, Experimental/metabolism , Animals , Female , Mice , Mice, Inbred BALB C , Models, Biological , Neoplasm Transplantation , Organoplatinum Compounds/pharmacokinetics , Radionuclide Imaging , Sarcoma, Experimental/diagnostic imaging , Tissue Distribution
15.
Eur J Nucl Med ; 16(8-10): 627-32, 1990.
Article in English | MEDLINE | ID: mdl-2384101

ABSTRACT

This paper reports the development of a new chemical formulation, Dy-HMA, to utilise the advantages of dysprosium 165 in radiation synovectomy of certain forms of arthritis. Dy-HMA is a sterile suspension of dysprosium hydroxide macroaggregates (approximately 6 mg Dy/ml) in saline with the majority of particles in the 3-5 microns range. The absence of ferric hydroxide and a higher concentration of dysprosium in the formulation offer advantages over dysprosium ferric hydroxide macroaggregates, Dy-165-FHMA. Biodistribution studies in rats and rabbits with Dy-HMA show less leakage than with Dy-FHMA and considerably less leakage than with yttrium silicate colloid. Rabbits treated with intra-articular injections of Dy-HMA equivalent to 10-30 times the typical clinical dose showed no signs of any toxic effects.


Subject(s)
Dysprosium/therapeutic use , Radioisotopes/therapeutic use , Synovial Membrane/radiation effects , Animals , Arthritis, Rheumatoid/radiotherapy , Dysprosium/pharmacokinetics , Male , Particle Size , Rabbits , Rats , Tissue Distribution
16.
Cancer Chemother Pharmacol ; 26(1): 42-6, 1990.
Article in English | MEDLINE | ID: mdl-2182213

ABSTRACT

A series of cis-dichloroplatinum(II) 2,3-diaminopropionamide complexes synthesised as potential imaging agents was tested for activity against a human ovarian tumour cell line (CI-80-13S) with high natural resistance to cisplatin and carboplatin as compared with other human cells. The most potent compound, the dimethyl ester of dichloro-[4-(methyleneiminodiacetic acid)phenyl (2',3'-diamino-propionamide)]platinum(II) (complex III), exhibited toxicity towards CI-80-13S cells similar to that observed in other cell lines, an effect that was not shown by the ligand alone or by cis-dichloroplatinum(II) 2,3-diaminopropionamide. However, complex III ester reproduced the genotoxic effects of cisplatin as judged by differential inactivation of two strains of adenovirus and by inhibition of cellular DNA and RNA synthesis; no major differences in these properties were observed between CI-80-13S and cisplatin-sensitive cells. Substantial inhibition of DNA and RNA synthesis was found within 2 h of treatment, much earlier than the effect of cisplatin. Complex III ester, which was 30- to 100-fold less potent than cisplatin, inhibited cell cycle progression in a similar way to equitoxic cisplatin, with cells accumulating in G2 at a dose of low toxicity and being arrested in all stages at higher levels. The latter in combination with colcemid caused extensive fragmentation of CI-80-13S cells. These results suggest that the mechanism of toxicity of such complexes involves factors, in addition to DNA damage, which rapidly inhibit nucleic acid synthesis and overcome natural resistance to cisplatin in the CI-80-13S cell line.


Subject(s)
Organoplatinum Compounds/pharmacology , Tumor Cells, Cultured/drug effects , Adenoviridae/drug effects , Carboplatin , Cell Cycle/drug effects , Cell Survival/drug effects , Cisplatin/pharmacology , DNA, Neoplasm/biosynthesis , Drug Resistance/genetics , Drug Screening Assays, Antitumor , Humans , RNA, Neoplasm/biosynthesis , Structure-Activity Relationship , Virus Replication/drug effects
17.
Int J Rad Appl Instrum B ; 17(4): 397-400, 1990.
Article in English | MEDLINE | ID: mdl-2143755

ABSTRACT

The synthesis of three new potential tumour-imaging radiopharmaceuticals in which a cis-platin derivative is attached to benzyl iminodiacetic acid, a ligand capable of forming a stable complex with 99mTc, has previously been reported by us [Awaluddin et al. Appl. Radiat. Isot. 38, 671-674 (1987)]. We have now carried out extensive biodistribution studies on these compounds as well as on two fragments of their structures which do not contain platinum. The results suggest that the presence of platinum is not essential for the tumour-localizing properties of the radiopharmaceuticals.


Subject(s)
Cisplatin/analogs & derivatives , Cisplatin/pharmacokinetics , Sarcoma, Experimental/metabolism , Animals , Imino Acids/pharmacokinetics , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Specific Pathogen-Free Organisms , Tissue Distribution
19.
Int J Rad Appl Instrum B ; 15(3): 319-25, 1988.
Article in English | MEDLINE | ID: mdl-3384680

ABSTRACT

Biodistributions of a series of thirteen 99mTc-o-hydroxy-benzyliminodiacetic acid complexes were carried out in rats and their hepatobiliary and urinary outputs correlated with lipophilicity, molecular weight, influence of substituent and plasma protein binding. Hepatobiliary output was moderate for those ligands with large alkyl substituents [t-butyl (36%), and iso-octyl (42%)] but compared to HIDA compounds was relatively low, indicating that they would not be suitable for clinical use. Halogen substituents had only a small effect on increasing hepatobiliary output but a large effect on reducing the urinary clearance.


Subject(s)
Imino Acids , Organometallic Compounds , Organotechnetium Compounds , Technetium , Animals , Female , Rats , Structure-Activity Relationship , Tissue Distribution
20.
Int J Rad Appl Instrum A ; 38(8): 671-4, 1987.
Article in English | MEDLINE | ID: mdl-2822626

ABSTRACT

Potential tumor imaging radiopharmaceutical agents have been prepared by attaching a cisplatin derivative to a ligand capable of forming a stable complex with 99mTc. Three new organometallic compounds, with iminodiacetic acid as the 99mTc chelating group and 2,3-diaminopropionamide as the platinum complexing group, have been prepared and characterized. Preliminary biodistribution studies in tumor bearing mice support the utility of this approach.


Subject(s)
Neoplasms/diagnostic imaging , Osteosarcoma/diagnostic imaging , Technetium , Animals , Female , Humans , Indicators and Reagents , Mice , Mice, Inbred BALB C , Radionuclide Imaging , Structure-Activity Relationship , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...