Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 293(2): C805-13, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17507429

ABSTRACT

Sex hormone status has emerged as an important modulator of coronary physiology and cardiovascular disease risk in both males and females. Our previous studies have demonstrated that testosterone increases protein kinase C (PKC) delta expression and activity in coronary smooth muscle (CSMC). Because PKCdelta has been implicated in regulation of proliferation and apoptosis in other cell types, we sought to determine if testosterone modulates CSMC proliferation and/or apoptosis through PKCdelta. Porcine CSMC cultures (passages 2-6) from castrated males were treated with testosterone for 24 h. Testosterone (20 and 100 nM) decreased [(3)H]thymidine incorporation in proliferating CSMC to 59 +/- 5.3 and 33.1 +/- 4.5% of control. Flow cytometric analysis demonstrated that testosterone induced G(1) arrest in CSMC with a concomitant reduction in the S phase cells. Testosterone reduced protein levels of cyclins D(1) and E and phosphorylation of retinoblastoma protein while elevating levels of p21(cip1) and p27(kip1). There were no significant differences in the levels of cyclins D(3), CDK2, CDK4, or CDK6. Testosterone significantly reduced kinase activity of CDK2 and -6, but not CDK4, -7, or -1. PKCdelta small interfering RNA (siRNA) prevented testosterone-mediated G(1) arrest, p21(cip1) upregulation, and cyclin D(1) and E downregulation. Furthermore, testosterone increased CSMC apoptosis in a dose-dependent manner, which was blocked by either PKCdelta siRNA or caspase 3 inhibition. These findings demonstrate that the anti-proliferative, pro-apoptotic effects of testosterone on CSMCs are substantially mediated by PKCdelta.


Subject(s)
Apoptosis , Cell Proliferation , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Protein Kinase C-delta/metabolism , Testosterone/metabolism , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Caspase Inhibitors , Castration , Cell Proliferation/drug effects , Cells, Cultured , Coronary Vessels/cytology , Coronary Vessels/metabolism , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , G1 Phase/drug effects , Male , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/pathology , Protein Kinase C-delta/genetics , RNA Interference , RNA, Small Interfering/metabolism , S Phase/drug effects , Swine , Testosterone/pharmacology
2.
Birth Defects Res B Dev Reprod Toxicol ; 74(3): 233-42, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15880679

ABSTRACT

BACKGROUND: The mycotoxin, secalonic acid D (SAD), a known animal and potential human cleft palate (CP)-inducing agent, is produced by Pencillium oxalicum in corn. SAD selectively inhibits proliferation of murine embryonic palatal mesenchymal (MEPM) cells leading to a reduction in cell numbers. These effects can explain the reduction in shelf size and the resulting CP seen in the offspring of SAD-exposed mice. Ability of SAD to inhibit proliferation as well as to block the progression of cells from G1- to S-phase of the cell-cycle were also shown in the human embryonic palatal mesenchymal (HEPM) cells suggesting the potential CP-inducing effect of SAD in human beings METHODS: Gestation day (GD) 12 mouse embryos and HEPM cells were used to test the hypothesis that the cell-cycle block induced by SAD results from a disruption of stage-specific regulatory components both in vivo and in vitro. The effects of SAD on the activity of various cyclin dependent kinases (CDK) and on the levels of various positive (cyclins and CDK) and negative (CDK inhibitors p15, 16, 18, 19, 21, 27, 57) cell-cycle regulators were assessed by performing kinase assays and immunoblots, respectively. RESULTS: In the murine embryonic palates, SAD specifically inhibited G1/S-phase-specific CDK2 activity, reduced the level of cyclin E and tended to increase the level of the CIP/kip CDK inhibitor, p21. In the HEPM cell cultures, exposure to IC50 of SAD significantly affected all of the above targets. In addition, a reduction in the levels/activity of CDK 4/6, a reduction in the levels of cyclins D1, D2, D3, E, A, and all INK4 family proteins, and an increase in the level of the CIP/kip CDK inhibitor, p57, were also seen. CONCLUSIONS: These results suggest that the S-phase-specific cell-cycle proteins CDK2, cyclin E and possibly p21 are the common targets of SAD in murine palatal shelves in vivo and in human embryonic palatal mesenchymal cells in vitro and may be relevant to the pathogenesis of SAD-induced CP.


Subject(s)
Cell Cycle Proteins/metabolism , Cleft Palate/chemically induced , Mesoderm/drug effects , Palate/drug effects , Xanthones/toxicity , Animals , CDC2-CDC28 Kinases/metabolism , Cell Cycle/drug effects , Cells, Cultured , Cyclin E/metabolism , Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinase Inhibitor p21 , Embryonic Development/drug effects , Humans , Mesoderm/metabolism , Mice , Palate/cytology , Palate/embryology
3.
Vascul Pharmacol ; 42(4): 153-62, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15820441

ABSTRACT

Glucocorticoids (GC) exert diverse cellular effects in response to both acute and chronic stress, the functional consequences of which have been implicated in the development of cardiovascular pathology such as hypertension and atherosclerosis. However, the mechanisms by which GCs activate divergent signaling pathways are poorly understood. The present study examined the direct effects of natural (cortisol) and synthetic (dexamethasone) GCs on protein kinase C (PKC) isoform expression in coronary arteries. Porcine right coronary arteries were treated in vitro for 18 h in the presence and absence of either dexamethasone (10, 100, or 500 nM) or cortisol (50, 125, 250, or 500 nM). PKC isoform levels and subcellular distribution were determined by immmunoblotting of whole cell homogenates and immunocytofluorescence using PKC-alpha, -betaII, -epsilon, -delta, and -zeta specific antibodies. Dexamethasone caused a approximately 4-fold increase in PKC-alpha, a approximately 2.5-fold increase in PKC-betaII, and a 2-fold increase in PKC-epsilon (p<0.05). In contrast, dexamethasone had no effect on PKC-delta or PKC- zeta levels. Dexamethasone also caused an increase in the activity of PKC-alpha (285%), -betaII (170%), and -epsilon (210%). Cortisol produced similar effects on PKC isoform expression. Confocal microscopy revealed that while dexamethasone altered localization patterns for PKC-alpha, -betaII and -epsilon, no such effect was observed for PKC-delta or PKC-zeta. The stimulatory effects of dexamethasone and cortisol on coronary PKC levels and translocation were prevented by the GC receptor (GR) blocker, RU486. These results demonstrate, for the first time, that GCs modulate coronary PKC expression and subcellular distribution in an isoform-specific manner through a GR-dependent mechanism.


Subject(s)
Coronary Vessels/drug effects , Coronary Vessels/enzymology , Glucocorticoids/pharmacology , Protein Kinase C/metabolism , Animals , Dose-Response Relationship, Drug , Isoenzymes/biosynthesis , Isoenzymes/metabolism , Male , Organ Culture Techniques , Protein Kinase C/biosynthesis , Subcellular Fractions/enzymology , Subcellular Fractions/metabolism , Swine
4.
Am J Physiol Heart Circ Physiol ; 287(5): H2091-8, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15242831

ABSTRACT

Evidence indicates that gender and sex hormonal status influence cardiovascular physiology and pathophysiology. We recently demonstrated increased L-type voltage-gated Ca2+ current (ICa,L) in coronary arterial smooth muscle (CASM) of male compared with female swine. The promoter region of the L-type voltage-gated Ca2+ channel (VGCC) (Cav1.2) gene contains a hormone response element that is activated by testosterone. Thus the purpose of the present study was to determine whether endogenous testosterone regulates CASM ICa,L through regulation of VGCC expression and activity. Sexually mature male and female Yucatan swine (7-8 mo; 35-45 kg) were obtained from the breeder. Males were left intact (IM, n=8), castrated (CM, n=8), or castrated with testosterone replacement (CMT, n=8; 10 mg/day Androgel). Females remained gonad intact (n=8). In right coronary arteries, both Cav1.2 mRNA and protein were greater in IM compared with intact females. Cav1.2 mRNA and protein were reduced in CM compared with IM and restored in CMT. In isolated CASM, both peak and steady-state ICa were reduced in CM compared with IM and restored in CMT. In males, a linear relationship was found between serum testosterone levels and ICa. In vitro, both testosterone and the nonaromatizable androgen, dihydrotestosterone, increased Cav1.2 expression. Furthermore, this effect was blocked by the androgen receptor antagonist cyproterone. We conclude that endogenous testosterone is a primary regulator of Cav1.2 expression and activity in coronary arteries of males.


Subject(s)
Coronary Vessels/metabolism , Muscle, Smooth, Vascular/metabolism , Testosterone/metabolism , Animals , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Female , In Vitro Techniques , Male , Orchiectomy , RNA, Messenger/metabolism , Sex Characteristics , Swine , Testosterone/blood
5.
J Appl Physiol (1985) ; 96(6): 2240-8, 2004 Jun.
Article in English | MEDLINE | ID: mdl-14752123

ABSTRACT

Hypercholesterolemia (HC) is a mary risk factor for the development of coronary heart disease. Coronary ion regulation, especially calcium, is thought to be important in coronary heart disease development; however, the influence of high dietary fat and cholesterol on coronary arterial smooth muscle (CASM) ion channels is unknown. The purpose of this study was to determine the effect of diet-induced HC on CASM voltage-gated calcium current (I(Ca)). Male miniature swine were fed a high-fat, high-cholesterol diet (40% kcal fat, 2% wt cholesterol) for 20-24 wk, resulting in elevated serum total and low-density lipoprotein cholesterol. Histochemistry indicated early atherosclerosis in large coronary arteries. CASM were isolated from the right coronary artery (>1.0 mm ID), small arteries ( approximately 200 microm), and large arterioles ( approximately 100 microm). I(Ca) was determined by whole cell voltage clamp. L-type I(Ca) was reduced approximately 30% by HC compared with controls in the right coronary artery (-5.29 +/- 0.42 vs. -7.59 +/- 0.41 pA/pF) but not the microcirculation (small artery, -8.39 +/- 0.80 vs. -10.13 +/- 0.60; arterioles, -10.78 +/- 0.93 vs. -11.31 +/- 0.95 pA/pF). Voltage-dependent activation was unaffected by HC in both the macro- and microcirculation. L-type voltage-gated calcium channel (Ca(v)1.2) mRNA and membrane protein levels were unaffected by HC. Inhibition of I(Ca) by HC was reversed in vitro by the cholesterol scavenger methyl-beta-cyclodextrin and mimicked in control CASM by incubation with the cholesterol donor cholesterol:methyl-beta-cyclodextrin. These data indicate that CASM L-type I(Ca) is decreased in large coronary arteries in early stages of atherosclerosis, whereas I(Ca) in the microcirculation is unaffected. The inhibition of calcium channel activity in CASM of large coronary arteries is likely due to increases in membrane free cholesterol.


Subject(s)
Calcium Channels, L-Type/physiology , Cholesterol, Dietary , Coronary Circulation/physiology , Gene Expression Regulation/physiology , Hypercholesterolemia/physiopathology , Microcirculation/physiopathology , Animals , Calcium Channels, L-Type/drug effects , Calcium Channels, L-Type/genetics , Male , Patch-Clamp Techniques , RNA, Messenger/genetics , Swine , Swine, Miniature
SELECTION OF CITATIONS
SEARCH DETAIL
...