Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biomater Biosyst ; 12: 100083, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37731910

ABSTRACT

The shortage of human donor corneas for transplantation necessitates the exploration of tissue engineering approaches to develop corneal substitutes. However, these substitutes must possess the necessary strength, transparency, and ability to regulate cell behaviour before they can be used in patients. In this study, we investigated the effectiveness of an oxygen plasma surface-modified poly-ε-caprolactone (PCL) combined with silk fibroin (SF) nanofibrous scaffold for corneal stromal regeneration. To fabricate the electrospun scaffolds, PCL and SF blends were used on a rotating mandrel. The optimization of the blend aimed to replicate the structural and functional properties of the human cornea, focusing on nanofibre alignment, mechanical characteristics, and in vitro cytocompatibility with human corneal stromal keratocytes. Surface modification of the scaffold resulted in improved transparency and enhanced cell interaction. Based on the evaluation, a composite nanofibrous scaffold with a 1:1 blend of PCL and SF was selected for a more comprehensive analysis. The biological response of keratocytes to the scaffold was assessed through cellular adhesion, proliferation, cytoskeletal organization, gene expression, and immunocytochemical staining. The scaffold facilitated the adhesion of corneal stromal cells, supporting cell proliferation, maintaining normal cytoskeletal organization, and promoting increased expression of genes associated with healthy corneal stromal keratocytes. These findings highlight the potential of a surface-modified PCL/SF blend (1:1) as a promising scaffolding material for corneal stromal regeneration. The developed scaffold not only demonstrated favourable biological interactions with corneal stromal cells but also exhibited characteristics aligned with the requirements for successful corneal tissue engineering. Further research and refinement of these constructs could lead to significant advancements in addressing the shortage of corneas for transplantation, ultimately improving the treatment outcomes for patients in need.

2.
PLoS One ; 16(6): e0245406, 2021.
Article in English | MEDLINE | ID: mdl-34061862

ABSTRACT

Decellularized porcine corneal scaffolds are a potential alternative to human cornea for keratoplasty. Although clinical trials have reported promising results, there can be corneal haze or scar tissue. Here, we examined if recellularizing the scaffolds with human keratocytes would result in a better outcome. Scaffolds were prepared that retained little DNA (14.89 ± 5.56 ng/mg) and demonstrated a lack of cytotoxicity by in vitro. The scaffolds were recellularized using human corneal stromal cells and cultured for between 14 in serum-supplemented media followed by a further 14 days in either serum free or serum-supplemented media. All groups showed full-depth cell penetration after 14 days. When serum was present, staining for ALDH3A1 remained weak but after serum-free culture, staining was brighter and the keratocytes adopted a native dendritic morphology with an increase (p < 0.05) of keratocan, decorin, lumican and CD34 gene expression. A rabbit anterior lamellar keratoplasty model was used to compare implanting a 250 µm thick decellularized lenticule against one that had been recellularized with human stromal cells after serum-free culture. In both groups, host rabbit epithelium covered the implants, but transparency was not restored after 3 months. Post-mortem histology showed under the epithelium, a less-compact collagen layer, which appeared to be a regenerating zone with some α-SMA staining, indicating fibrotic cells. In the posterior scaffold, ALDH1A1 staining was present in all the acellular scaffold, but in only one of the recellularized lenticules. Since there was little difference between acellular and cell-seeded scaffolds in our in vivo study, future scaffold development should use acellular controls to determine if cells are necessary.


Subject(s)
Cornea/cytology , Corneal Transplantation , Prostheses and Implants , Animals , Collagen/metabolism , Cornea/surgery , Rabbits , Swine , Tissue Engineering , Tissue Scaffolds
3.
Bio Protoc ; 11(6): e3963, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33855121

ABSTRACT

Tissue engineering has emerged as a strategy to combat the donor shortage of human corneas for transplantation. Synthetic corneal substitutes are currently unable to support the normal phenotype of human cells and so decellularized animal corneas have been deployed to more closely provide the topographical and biochemical cues to promote cell attachment and function. Although full thickness decellularized corneas can support corneal cells, the cells are slow to populate the scaffold and density declines from the surface. To avoid these problems, this protocol describes the stacking of alternate layers of decellularized porcine corneal sheets and cell-laden collagen hydrogel to produce a corneal construct. The sheets are obtained by cryosectioning porcine corneas, decellularizing them with detergents and nucleases and finally air drying for storage and ease of manufacture. Corneal stromal cells are then encapsulated in a collagen type I solution and cast between these sheets. This protocol presents a rapid method to ensure high cellularity throughout the construct using tissue-derived materials alone. Graphic abstract: Overview of main process to obtain corneal stromal equivalents.

4.
BMJ Open Ophthalmol ; 5(1): e000510, 2020.
Article in English | MEDLINE | ID: mdl-33024827

ABSTRACT

The biomedical use of silk as a suture dates back to antiquity. Fibroin is the structural element that determines the strength of silk and here we consider the safety of fibroin in its role in ophthalmology. The high mechanical strength of silk meant sufficiently thin threads could be made for eye microsurgery, but such usage was all but superseded by synthetic polymer sutures, primarily because silk in its entirety was more inflammatory. Significant immunological response can normally be avoided by careful manufacturing to provide high purity fibroin, and it has been utilised in this form for tissue engineering an array of fibre and film substrata deployed in research with cells of the eye. Films of fibroin can also be made transparent, which is a required property in the visual pathway. Transparent layers of corneal epithelial, stromal and endothelial cells have all been demonstrated with maintenance of phenotype, as have constructs supporting retinal cells. Fibroin has a lack of demonstrable infectious agent transfer, an ability to be sterilised and prepared with minimal contamination, long-term predictable degradation and low direct cytotoxicity. However, there remains a known ability to be involved in amyloid formation and potential amyloidosis which, without further examination, is enough to currently question whether fibroin should be employed in the eye given its innervation into the brain.

5.
Methods Mol Biol ; 2145: 215-230, 2020.
Article in English | MEDLINE | ID: mdl-32542610

ABSTRACT

Tissue-engineered corneal constructs offer the potential of readily available corneal substitutes for transplantation. As with all medical devices and implants, these constructs require rigorous safety assessments, combined with well-described analyses of the implant's physical and biological characteristics. Although the constructs are developed in vitro, such studies are currently unable to fully emulate the complex biomechanical and biochemical conditions within living tissue, as well as the interplay between this environment and immunological factors. For these reasons, animal models remain essential to characterize such interactions. They form a stage where corneal implants can be tested for utility and survival in a living location to assess their ability to provide vision and avoid adverse event. Here, we examine the surgical considerations of animal models and we describe how the rabbit can be used for this purpose. This animal has been the routine model for ophthalmological studies and we set out methods to implant corneal constructs with this species.


Subject(s)
Cornea/growth & development , Corneal Transplantation/methods , Tissue Engineering/methods , Animals , Cornea/pathology , Humans , Models, Animal , Prostheses and Implants , Rabbits
6.
Tissue Eng Part A ; 26(19-20): 1030-1041, 2020 10.
Article in English | MEDLINE | ID: mdl-32368948

ABSTRACT

To overcome the serious shortage of donor corneas for transplantation, alternatives based on tissue engineering need to be developed. Decellularized corneas are one potential alternative, but their densely packed collagen architecture inhibits recellularization in vitro. Therefore, a new rapid method of recellularizing these constructs to ensure high cellularity throughout the collagen scaffold is needed. In this study, we developed a novel method for fabricating corneal constructs by using decellularized porcine corneal sheets assembled using a bottom-up approach by layering multiple sheets between cell-laden collagen I hydrogel. Corneal lenticules were cut from porcine corneas by cryosectioning, then decellularized with detergents and air-dried for storage as sheets. Human corneal stromal cells were encapsulated in collagen I hydrogel and cast between the dried sheets. Constructs were cultured in serum-free medium supplemented with ascorbic acid and insulin for 2 weeks. Epithelial cells were then seeded on the surface and cultured for an additional week. Transparency, cell viability, and phenotype were analyzed by qPCR, histology, and immunofluorescence. Constructs without epithelial cells were sutured onto an ex vivo porcine cornea and cultured for 1 week. Lenticules were successfully decellularized, achieving dsDNA values of 13 ± 1.2 ng/mg dry tissue, and were more resistant to degradation than the collagen I hydrogels. Constructs maintained high cell viability with a keratocyte-like phenotype with upregulation of keratocan, decorin, lumican, collagen I, ALDH3A1, and CD34 and the corneal epithelial cells stratified with a cobblestone morphology. The construct was amenable to surgical handling and no tearing occurred during suturing. After 7 days ex vivo, constructs were covered by a neoepithelium from the host porcine cells and integration into the host stroma was observed. This study describes a novel approach toward fabricating anterior corneal substitutes in a simple and rapid manner, obtaining mature and suturable constructs using only tissue-derived materials.


Subject(s)
Corneal Stroma , Tissue Engineering , Tissue Scaffolds , Animals , Cells, Cultured , Collagen , Cornea/cytology , Humans , Swine , Transplantation, Heterologous
7.
Biomed Opt Express ; 8(12): 5579-5593, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29296489

ABSTRACT

Optical coherence tomography (OCT) can monitor human donor corneas non-invasively during the de-swelling process following storage for corneal transplantation, but currently only resultant thickness as a function of time is extracted. To visualize and quantify the mechanism of de-swelling, we present a method exploiting the nanometer sensitivity of the Fourier phase in OCT data to image deformation velocities. The technique was demonstrated by non-invasively showing during de-swelling that osmotic flow through an intact epithelium is negligible and removing the endothelium approximately doubled the initial flow at that interface. The increased functional data further enabled the validation of a mathematical model of the cornea. Included is an efficient method of measuring high temporal resolution (1 minute demonstrated) corneal thickness, using automated collection and semi-automated graph search segmentation. These methods expand OCT capabilities to measure volume change processes for tissues and materials.

8.
Cornea ; 32(6): 725-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23538627

ABSTRACT

PURPOSE: To develop an internationally agreed terminology for describing ocular tissue grafts to improve the accuracy and reliability of information transfer, to enhance tissue traceability, and to facilitate the gathering of comparative global activity data, including denominator data for use in biovigilance analyses. METHODS: ICCBBA, the international standards organization for terminology, coding, and labeling of blood, cells, and tissues, approached the major Eye Bank Associations to form an expert advisory group. The group met by regular conference calls to develop a standard terminology, which was released for public consultation and amended accordingly. RESULTS: The terminology uses broad definitions (Classes) with modifying characteristics (Attributes) to define each ocular tissue product. The terminology may be used within the ISBT 128 system to label tissue products with standardized bar codes enabling the electronic capture of critical data in the collection, processing, and distribution of tissues. Guidance on coding and labeling has also been developed. CONCLUSIONS: The development of a standard terminology for ocular tissue marks an important step for improving traceability and reducing the risk of mistakes due to transcription errors. ISBT 128 computer codes have been assigned and may now be used to label ocular tissues. Eye banks are encouraged to adopt this standard terminology and move toward full implementation of ISBT 128 nomenclature, coding, and labeling.


Subject(s)
Corneal Transplantation/standards , Electronic Data Processing/standards , Eye Banks/standards , Product Labeling/standards , Terminology as Topic , Tissue and Organ Procurement/standards , Global Health , Humans , International Cooperation , Medical Errors/prevention & control , Ophthalmology/organization & administration , Organ Preservation , Organ Preservation Solutions
9.
Exp Eye Res ; 107: 110-20, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23247085

ABSTRACT

Eph receptor tyrosine kinases and their ligands, the ephrins, regulate the development and maintenance of multiple organs but little is known about their potential role within the cornea. The purpose of this study was to perform a thorough investigation of Eph/ephrin expression within the human cornea including the limbal stem cell niche. Initially, immunohistochemistry was performed on human donor eyes to determine the spatial distribution of Eph receptors and ephrins in the cornea and limbus. Patterns of Eph/ephrin gene expression in (1) immortalised human corneal endothelial (B4G12) or corneal epithelial (HCE-T) cell lines, and (2) primary cultures of epithelial or stromal cells established from the corneal limbus of cadaveric eye tissue were then assessed by reverse transcription (RT) PCR. Limbal epithelial or stromal cells from primary cultures were also assessed for evidence of Eph/ephrin-reactivity by immunofluorescence. Immunoreactivity for ephrinA1 and EphB4 was detected in the corneal endothelium of donor eyes. EphB4 was also consistently detected in the limbal and corneal epithelium and in cells located in the stroma of the peripheral cornea. Expression of multiple Eph/ephrin genes was detected in immortalised corneal epithelial and endothelial cell lines. Evidence of Eph/ephrin gene expression was also demonstrated in primary cultures of human limbal stromal (EphB4, B6; ephrinA5) and epithelial cells (EphA1, A2; ephrinA5, B2) using both RT-PCR and immunofluorescence. The expression of Eph receptors and ephrins within the human cornea and limbus is much wider than previously appreciated and suggests multiple potential roles for these molecules in the maintenance of normal corneal architecture.


Subject(s)
Cornea/metabolism , Ephrins/genetics , Gene Expression Regulation/physiology , Limbus Corneae/metabolism , Receptors, Eph Family/genetics , Cells, Cultured , DNA Primers/chemistry , Endothelium, Corneal/metabolism , Ephrins/metabolism , Epithelium, Corneal/metabolism , Fluorescent Antibody Technique, Indirect , Humans , Immunoenzyme Techniques , Polymerase Chain Reaction , RNA, Messenger/metabolism , Receptors, Eph Family/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tissue Donors
10.
Mater Sci Eng C Mater Biol Appl ; 33(2): 668-74, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-25427472

ABSTRACT

We have compared the effects of different sterilization techniques on the properties of Bombyx mori silk fibroin thin films with the view to subsequent use for corneal tissue engineering. The transparency, tensile properties, corneal epithelial cell attachment and degradation of the films were used to evaluate the suitability of certain sterilization techniques including gamma-irradiation (in air or nitrogen), steam treatment and immersion in aqueous ethanol. The investigations showed that gamma-irradiation, performed either in air or in a nitrogen atmosphere, did not significantly alter the properties of films. The films sterilized by gamma-irradiation or by immersion in ethanol had a transparency greater than 98% and tensile properties comparable to human cornea and amniotic membrane, the materials of choice in the reconstruction of ocular surface. Although steam-sterilization produced stronger, stiffer films, they were less transparent, and cell attachment was affected by the variable topography of these films. It was concluded that gamma-irradiation should be considered to be the most suitable method for the sterilization of silk fibroin films, however, the treatment with ethanol is also an acceptable method.


Subject(s)
Biocompatible Materials/chemistry , Bombyx , Cell Culture Techniques/methods , Fibroins/chemistry , Animals , Biocompatible Materials/pharmacology , Cell Adhesion/drug effects , Cell Line , Fibroins/pharmacology , Fibroins/physiology , Humans , Sterilization , Surface Properties , Tensile Strength/physiology , Tissue Engineering
11.
Biomaterials ; 32(17): 4076-84, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21427010

ABSTRACT

Tissue engineering of the cornea could overcome shortages of donor corneas for transplantation and improve quality. Our aim was to grow an endothelial layer on a substratum suitable for transplant. Silkworm (Bombyx mori) fibroin was prepared as 5 µm thick transparent membranes. The B4G12 cell line was used to assess attachment and growth of human corneal endothelial cells on fibroin and compare this with a reference substratum of tissue-culture plastic. To see if cell attachment and proliferation could be improved, we assessed coatings of collagen IV, FNC Coating Mix(®) and a chondroitin sulphate-laminin mixture. All the coatings improved the final mean cell count, but consistently higher cell densities were achieved on a tissue-culture plastic rather than fibroin substratum. Collagen-coated substrata were the best of both groups and collagen-coated fibroin was comparable to uncoated tissue-culture plastic. Only fibroin with collagen coating achieved cell confluency. Primary human corneal endothelial cells were then grown using a sphere-forming technique and when seeded onto collagen-coated fibroin they grew to confluency with polygonal morphology. We report the first successful growth of primary human corneal endothelial cells on coated fibroin as a step in evaluating fibroin as a substratum for the transplantation of tissue-constructs for endothelial keratoplasty.


Subject(s)
Endothelial Cells/cytology , Endothelium, Corneal/cytology , Fibroins/chemistry , Tissue Engineering/methods , Animals , Bombyx , Cell Count , Cell Division , Cell Line , Collagen/chemistry , Humans , Laminin/chemistry
12.
Biomaterials ; 32(10): 2445-58, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21251709

ABSTRACT

The silk structural protein fibroin displays potential for use in tissue engineering. We present here our opinion of its value as a biomaterial for reconstructing tissues of clinical significance within the human eye. We review the strengths and weaknesses of using fibroin in those parts of the eye that we believe are most amenable to cellular reconstruction, namely the corneoscleral limbus, corneal stroma, corneal endothelium and outer blood-retinal barrier (Ruysch's complex). In these areas we find that by employing the range of manufacturing products afforded by fibroin, relevant structural assemblies can be made for cells expanded ex vivo. Significant questions now need to be answered concerning the effect of this biomaterial on the phenotype of key cell types and the biocompatibility of fibroin within the eye. We conclude that fibroin's strength, structural versatility and potential for modification, combined with the relative simplicity of associated manufacturing processes, make fibroin a worthy candidate for further exploration.


Subject(s)
Eye/drug effects , Fibroins/pharmacology , Tissue Engineering/methods , Animals , Bioengineering , Eye/growth & development , Humans
13.
Comp Biochem Physiol B Biochem Mol Biol ; 137(3): 341-50, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15050521

ABSTRACT

Teleost myoglobin (Mb) proteins from four fish species inhabiting different temperature environments were used to investigate the relationship between protein function and thermal stability. Mb was isolated from yellowfin tuna (homeothermal warm), mackerel (eurythermal warm), and the Antarctic teleost Notothenia coriiceps (stenothermal cold). Zebrafish (stenothermal tropical) myoglobin was expressed from cloned cDNA. These proteins differed in oxygen affinity, as measured by O2 dissociation rates and P50 values, and thermal stability as measured by autooxidation rates. Mackerel Mb had the highest P50 value at 25 degrees C (3.7 mmHg), corresponding to the lowest O2 affinity, followed by zebrafish (1.0 mmHg), yellowfin tuna (1.0 mmHg), and N. coriiceps (0.6 mmHg). Oxygen dissociation rates and Arrhenius plots were similar between all teleost species in this study, with the exception of mackerel myoglobin, which was two-fold faster at all temperatures tested. Myoglobin from the Antarctic teleost had the highest autooxidation rate (0.44 h(-1)), followed by mackerel (0.26 h(-1)), zebrafish (0.22 h(-1)), and yellowfin tuna (0.088 h(-1)). Primary structural analysis revealed residue differences distributed throughout the polypeptide sequences, making it difficult to identify, which, if any, residues contribute to structural flexibility. However, analysis of molecular dynamics trajectories indicates that Mb from the eurythermal mackerel is predicted to be the most flexible protein within the D loop and FG turn. At the same time, it has the lowest O2 affinity and the highest O2 dissociation rates when compared to myoglobins from teleosts that appear to be less flexible in our dynamics simulations.


Subject(s)
Adaptation, Physiological , Myoglobin/chemistry , Temperature , Amino Acid Sequence , Animals , Environment , Fishes , Kinetics , Models, Molecular , Myoglobin/metabolism , Oxygen/metabolism , Pliability , Protein Conformation , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...