Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Horiz ; 7(12): 1513-1522, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36168871

ABSTRACT

Localized surface plasmon resonance (LSPR) of metallic nanostructures is a unique phenomenon that controls the light in sub-wavelength volumes and enhances the light-matter interactions. Traditionally, the excitation and measurement of LSPR require bulky external light sources, and efforts to scale down to nano-plasmonic devices have predominantly relied on the system's miniaturization and associated accessories. Addressing this, here we show the generation and detection of LSPR wavelength (λLSPR) shifts in large-area nanostructured Au surfaces using frictional charges generated by triboelectric surfaces. We observe a complex interplay of the localized surface plasmons with frictional charges via concurrent spectroscopic and triboelectric measurements undertaken for the detection of bioconjugation in the streptavidin-biotin complex. When subjected to multivariate principal component analysis, a strong correlation between the triboelectric peak-to-peak voltage output response and the λLSPR shift is observed. Furthermore, we reveal a landscape of the interfacial events involved in the electrical generation/detection of the LSPR by using theoretical models and surface characterization. The demonstrated concept of electrification of plasmon resonance thus provides the underlying basis for the subsequent development of self-powered nano-plasmonic sensors and opens new horizons for advanced nanophotonic applications.


Subject(s)
Nanostructures , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Streptavidin/chemistry , Nanostructures/chemistry , Biotin/chemistry , Models, Theoretical
2.
Nano Lett ; 21(22): 9780-9788, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34735771

ABSTRACT

Tuning optical or magnetic properties of nanoparticles, by addition of impurities, for specific applications is usually achieved at the cost of band gap and work function reduction. Additionally, conventional strategies to develop nanoparticles with a large band gap also encounter problems of phase separation and poor crystallinity at high alloying degree. Addressing the aforementioned trade-offs, here we report Ni-Zn nanoferrites with energy band gap (Eg) of ≈3.20 eV and a work function of ≈5.88 eV. While changes in the magnetoplasmonic properties of the Ni-Zn ferrite were successfully achieved with the incorporation of bismuth ions at different concentrations, there was no alteration of the band gap and work function in the developed Ni-Zn ferrite. This suggests that with the addition of minute impurities to ferrites, independent of their changes in the band gap and work function, one can tune their magnetic and optical properties, which is desired in a wide range of applications such as nanobiosensing, nanoparticle based catalysis, and renewable energy generation using nanotechnology.

3.
Faraday Discuss ; 222(0): 390-404, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32133465

ABSTRACT

The relationship between the crystallization process and opto-electronic properties of silicon quantum dots (Si QDs) synthesized by atmospheric pressure plasmas (APPs) is studied in this work. The synthesis of Si QDs is carried out by flowing silane as a gas precursor in a plasma confined to a submillimeter space. Experimental conditions are adjusted to propitiate the crystallization of the Si QDs and produce QDs with both amorphous and crystalline character. In all cases, the Si QDs present a well-defined mean particle size in the range of 1.5-5.5 nm. Si QDs present optical bandgaps between 2.3 eV and 2.5 eV, which are affected by quantum confinement. Plasma parameters evaluated using optical emission spectroscopy are then used as inputs for a collisional plasma model, whose calculations yield the surface temperature of the Si QDs within the plasma, justifying the crystallization behavior under certain experimental conditions. We measure the ultraviolet-visible optical properties and electronic properties through various techniques, build an energy level diagram for the valence electrons region as a function of the crystallinity of the QDs, and finally discuss the integration of these as active layers of all-inorganic solar cells.

4.
Sci Rep ; 8(1): 3247, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29459683

ABSTRACT

New synthesis routes to tailor graphene properties by controlling the concentration and chemical configuration of dopants show great promise. Herein we report the direct reproducible synthesis of 2-3% nitrogen-doped 'few-layer' graphene from a solid state nitrogen carbide a-C:N source synthesized by femtosecond pulsed laser ablation. Analytical investigations, including synchrotron facilities, made it possible to identify the configuration and chemistry of the nitrogen-doped graphene films. Auger mapping successfully quantified the 2D distribution of the number of graphene layers over the surface, and hence offers a new original way to probe the architecture of graphene sheets. The films mainly consist in a Bernal ABA stacking three-layer architecture, with a layer number distribution ranging from 2 to 6. Nitrogen doping affects the charge carrier distribution but has no significant effects on the number of lattice defects or disorders, compared to undoped graphene synthetized in similar conditions. Pyridinic, quaternary and pyrrolic nitrogen are the dominant chemical configurations, pyridinic N being preponderant at the scale of the film architecture. This work opens highly promising perspectives for the development of self-organized nitrogen-doped graphene materials, as synthetized from solid carbon nitride, with various functionalities, and for the characterization of 2D materials using a significant new methodology.

5.
ACS Appl Mater Interfaces ; 8(2): 1424-33, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26710829

ABSTRACT

Improving graphene-based electrode fabrication processes and developing robust methods for its functionalization are two key research routes to develop new high-performance electrodes for electrochemical applications. Here, a self-organized three-dimensional (3D) graphene electrode processed by pulsed laser deposition with thermal annealing is reported. This substrate shows great performance in electron transfer kinetics regarding ferrocene redox probes in solution. A robust electrografting strategy for covalently attaching a redox probe onto these graphene electrodes is also reported. The modification protocol consists of a combination of diazonium salt electrografting and click chemistry. An alkyne-terminated phenyl ring is first electrografted onto the self-organized 3D graphene electrode by in situ electrochemical reduction of 4-ethynylphenyl diazonium. Then the ethynylphenyl-modified surface efficiently reacts with the redox probe bearing a terminal azide moiety (2-azidoethyl ferrocene) by means of Cu(I)-catalyzed alkyne-azide cycloaddition. Our modification strategy applied to 3D graphene electrodes was analyzed by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy (XPS). For XPS chemical surface analysis, special attention was paid to the distribution and chemical state of iron and nitrogen in order to highlight the functionalization of the graphene-based substrate by electrochemically grafting a ferrocene derivative. Dense grafting was observed, offering 4.9 × 10(-10) mol cm(-2) surface coverage and showing a stable signal over 22 days. The electrografting was performed in the form of multilayers, which offers higher ferrocene loading than a dense monolayer on a flat surface. This work opens highly promising perspectives for the development of self-organized 3D graphene electrodes with various sensing functionalities.

SELECTION OF CITATIONS
SEARCH DETAIL
...