Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(44): 51867-51875, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-33957755

ABSTRACT

The biomimetic mineralization of zeolitic imidazolate framework-8 (ZIF-8) has been reported as a strategy for enzyme immobilization, enabling the heterogenization and protection of biomacromolecules. Here, we report the preparation of different Candida antarctica lipase B biocomposites (CALB@ZIF-8) formed by altering the concentrations of Zn2+ and 2-methylimidazole (2-mIM). The influence of synthetic conditions on the catalytic activity of the lipase CALB was examined by hydrolysis and transesterification assays in aqueous and organic media, respectively. We demonstrated that for both reactions, activity was retained for the biocomposites formed at low Zn2+/2-mIM ratios but notably almost entirely lost when the ligand concentration used to form the biocomposites was increased. Additionally, phosphate buffer could regenerate the activity of larger particles by degrading the crystal surfaces and releasing encapsulated CALB into solution. Transesterification reactions using CALB@ZIF-8 biocomposites were undertaken in 100% hexane, giving rise to enhanced CALB activity relative to the free enzyme. These observations highlight the fundamental importance of synthetic protocols and operating parameters for developing enzyme@MOF biocomposites with improved activity in challenging conditions.

2.
J Am Chem Soc ; 141(6): 2348-2355, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30636404

ABSTRACT

Encapsulation of biomacromolecules in metal-organic frameworks (MOFs) can preserve biological functionality in harsh environments. Despite the success of this approach, termed biomimietic mineralization, limited consideration has been given to the chemistry of the MOF coating. Here, we show that enzymes encapsulated within hydrophilic MAF-7 or ZIF-90 retain enzymatic activity upon encapsulation and when exposed to high temperatures, denaturing or proteolytic agents, and organic solvents, whereas hydrophobic ZIF-8 affords inactive catalase and negligible protection to urease.


Subject(s)
Enzymes, Immobilized/chemistry , Hydrophobic and Hydrophilic Interactions , Metal-Organic Frameworks/chemistry , Capsules , Catalase/chemistry , Catalase/metabolism , Enzymes, Immobilized/metabolism , Models, Molecular , Protein Conformation , Protein Denaturation , Temperature , Urease/chemistry , Urease/metabolism
3.
Chem Sci ; 9(18): 4217-4223, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29780551

ABSTRACT

The durability of enzymes in harsh conditions can be enhanced by encapsulation within metal-organic frameworks (MOFs) via a process called biomimetic mineralisation. Herein we show that the surface charge and chemistry of a protein determines its ability to seed MOF growth. We demonstrate that chemical modification of amino acids on the protein surface is an effective method for systematically controlling biomimetic mineralisation by zeolitic imidazolate framework-8 (ZIF-8). Reaction of surface lysine residues with succinic (or acetic) anhydride facilitates biomimetic mineralisation by increasing the surface negative charge, whereas reaction of surface carboxylate moieties with ethylenediamine affords a more positively charged protein and hinders the process. Moreover, computational studies confirm that the surface electrostatic potential of a protein is a good indicator of its ability to induce biomimetic mineralisation. This study highlights the important role played by protein surface chemistry in encapsulation and outlines a general method for facilitating the biomimetic mineralisation of proteins.

4.
Arch Biochem Biophys ; 615: 15-21, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28048974

ABSTRACT

A self-sufficient CYP102 family encoding gene (Krac_9955) has been identified from the bacterium Ktedonobacter racemifer DSM44963 which belongs to the Chloroflexi phylum. The characterisation of the substrate range of this enzyme was hampered by low levels of production using E. coli. The yield and purity of the Krac9555 enzyme was improved using a codon optimised gene, the introduction of a tag and modification of the purification protocol. The heme domain was isolated and in vitro analysis of substrate binding and turnover was performed. Krac9955 was found to preferentially bind alkyl- and alkyloxy-benzoic acids (≥95% high spin, Kd < 3 µM) over saturated and unsaturated fatty acids. Unusually for a self-sufficient CYP102 family member Krac9955 showed low levels of NAD(P)H oxidation activity for all the substrates tested though product formation was observed for many. For nearly all substrates the preferred site of hydroxylation of Krac9955 was eight carbons away from the carboxylate group with certain reactions proceeding at ≥ 90% selectivity. Krac9955 differs from CYP102A1 (P450Bm3), and is the first self-sufficient member of the CYP102 family of P450 enzymes which is not optimised for fast fatty acid hydroxylation close to the ω-terminus.


Subject(s)
Bacterial Proteins/chemistry , Chloroflexi/enzymology , Cytochrome P-450 Enzyme System/chemistry , NADPH-Ferrihemoprotein Reductase/chemistry , Oxygenases/chemistry , Carbon/chemistry , Electron Transport , Escherichia coli/metabolism , Fatty Acids/chemistry , Heme/chemistry , Hydroxylation , Kinetics , Mixed Function Oxygenases/chemistry , NADP/chemistry , Oxidation-Reduction , Oxygen/chemistry , Protein Domains , Substrate Specificity
5.
Biochim Biophys Acta ; 1860(6): 1149-62, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26825771

ABSTRACT

BACKGROUND: Two self-sufficient CYP102 family encoding genes (Krac_0936 and Krac_9955) from the bacterium Ktedonobacter racemifer DSM44963, which possesses one of the largest bacterial genomes, have been identified. METHODS: Phylogenetic analysis of both the encoded cytochrome P450 enzymes, Krac0936 and Krac9955. Both enzymes were produced and their turnovers with fatty acid substrates assessed in vitro and using a whole-cell oxidation system. RESULTS: Krac0936 hydroxylated straight chain, saturated fatty acids predominantly at the ω-1 and ω-2 positions using NADPH as the cofactor. Krac0936 was less active towards shorter unsaturated fatty acids but longer unsaturated acids were efficiently oxidised. cis,cis-9,12-Octadecadienoic and pentadecanoic acids were the most active substrates tested with Krac0936. Unusually Krac9955 showed very low levels of NAD(P)H oxidation activity though coupling of the reducing equivalents to product formation was high. The product distribution of tridecanoic, tetradecanoic and pentadecanoic acid oxidation by Krac9955 favoured oxidation at the ω-4, ω-5 and ω-6 positions, respectively. CONCLUSION: Krac0936 and Krac9955 are self-sufficient P450 monooxygenases. Krac0936 has a preference for pentadecanoic acid over other straight chain fatty acids and showed little or no activity with dodecanoic or octadecanoic acids. Krac9955 preferably oxidised shorter fatty acids compared to Krac0936 with tridecanoic having the highest levels of product formation. Unlike Krac0936 and P450Bm3, Krac9995 showed lower activities with unsaturated fatty acids. GENERAL SIGNIFICANCE: In this study of two of the CYP enzymes from K. racemifer we have shown that this bacterium from the Chloroflexi phylum contains genes which encode new proteins with novel activity.


Subject(s)
Bacterial Proteins/chemistry , Chloroflexi/enzymology , Cytochrome P-450 Enzyme System/chemistry , Fatty Acids/chemistry , NADPH-Ferrihemoprotein Reductase/chemistry , Amino Acid Sequence , Catalytic Domain , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...