Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37991614

ABSTRACT

Tea, the major beverage worldwide, is one of the oldest commercial commodities traded from ancient times. Apart from many of its advantages, including health, socio-economic, climatic, and agro-ecological values, FAO has recognized that the tea value chain covering its growth in the field, processing and marketing, and finally, the hot cup at the user's hand needs to be made sustainable during all these stages. Tea generates a lot of waste in different forms in different stages of its growth and processing, and these wastes, if not managed properly, may cause environmental pollution. A planned utilization of these wastes as feedstocks for various processes can generate more income, create rural livelihood opportunities, help grow tea environmentally sustainable, avoid GHG emissions, and make a real contribution to SDGs. Thermochemical and biological conversion of tea wastes generates value-added products. This review provides an overview on the impacts of the tea wastes on the environment, tea waste valorization processes, and applications of value-added products. The application of value-added products for energy generation, wastewater treatment, soil conditioners, adsorbents, biofertilizers, food additives, dietary supplements, animal feed bioactive chemicals, dye, colourant, and phytochemicals has been reviewed. Further, the challenges in sustainable utilization of tea wastes and opportunities for commercial exploitation of value-added products from tea wastes have been reviewed.

2.
Environ Res ; 204(Pt D): 112346, 2022 03.
Article in English | MEDLINE | ID: mdl-34742708

ABSTRACT

Metals represent a large proportion of industrial effluents, which due to their high hazardous nature and toxicity are responsible to create environmental pollution that can pose significant threat to the global flora and fauna. Strict ecological rules compromise sustainable recovery of metals from industrial effluents by replacing unsustainable and energy-consuming physical and chemical techniques. Innovative technologies based on the bioelectrochemical systems (BES) are a rapidly developing research field with proven encouraging outcomes for many industrial commodities, considering the worthy options for recovering metals from industrial effluents. BES technology platform has redox capabilities with small energy-intensive processes. The positive stigma of BES in metals recovery is addressed in this review by demonstrating the significance of BES over the current physical and chemical techniques. The mechanisms of action of BES towards metal recovery have been postulated with the schematic representation. Operational limitations in BES-based metal recovery such as biocathode and metal toxicity are deeply discussed based on the available literature results. Eventually, a progressive inspection towards a BES-based metal recovery platform with possibilities of integration with other modern technologies is foreseen to meet the real-time challenges of viable industrial commercialization.


Subject(s)
Bioelectric Energy Sources , Metals , Recycling
SELECTION OF CITATIONS
SEARCH DETAIL
...