Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1386923, 2024.
Article in English | MEDLINE | ID: mdl-38756725

ABSTRACT

Seventeen Gram-negative, facultatively anaerobic bacterial strains were isolated from bleeding cankers of various broadleaf hosts and oak rhizosphere soil in Great Britain. The strains were tentatively identified as belonging to the genus Raoultella based on 16S rRNA gene sequencing. Multilocus sequence analysis (MLSA), based on four protein-encoding genes (fusA, leuS, pyrG, and rpoB), separated the strains into three clusters within the Raoultella genus clade. The majority of strains clustered with the type strain of Raoultella terrigena, with the remaining strains divided into two clusters with no known type strain. Whole genome sequencing comparisons confirmed these two clusters of strains as belonging to two novel Raoultella species which can be differentiated phenotypically from their current closest phylogenetic relatives. Therefore, two novel species are proposed: Raoultella scottia sp. nov. (type strain = BAC 10a-01-01T = LMG 33072T = CCUG 77096T) and Raoultella lignicola sp. nov. (type strain = TW_WC1a.1T = LMG 33073T = CCUG 77094T).

2.
Microorganisms ; 11(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38004800

ABSTRACT

Acute oak decline is a high-impact disease causing necrotic lesions on the trunk, crown thinning and the eventual death of oak. Four bacterial species are associated with the lesions-Brenneria goodwinii, Gibbsiella quercinecans, Rahnella victoriana and Lonsdalea Britannica-although an epi-/endophytic lifestyle has also been suggested for these bacteria. However, little is known about their environmental reservoirs or their pathway to endophytic colonisation. This work aimed to investigate the ability of the four AOD-associated bacterial species to survive for prolonged periods within rhizosphere soil, leaves and acorns in vitro, and to design an appropriate method for their recovery. This method was trialled on field samples related to healthy and symptomatic oaks. The in vitro study showed that the majority of these species could survive for at least six weeks within each sample type. Results from the field samples demonstrated that R. victoriana and G. quercinecans appear environmentally widespread, indicating multiple routes of endophytic colonisation might be plausible. B. goodwinii and L. britannica were only identified from acorns from healthy and symptomatic trees, indicating they may be inherited members of the endophytic seed microbiome and, despite their ability to survive outside of the host, their environmental occurrence is limited. Future research should focus on preventative measures targeting the abiotic factors of AOD, how endophytic bacteria shift to a pathogenic cycle and the identification of resilient seed stock that is less susceptible to AOD.

3.
Syst Appl Microbiol ; 46(2): 126399, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36689899

ABSTRACT

While investigating the role of the rhizosphere in the development of Acute Oak Decline, bacterial strains belonging to the family Enterobacteriaceae were isolated from rhizosphere soil following enrichment for the Enterobacterales. Partial sequencing of several housekeeping genes showed that these strains could not be assigned to an existing genus. Overall, 16 strains were investigated using a polyphasic approach to determine their taxonomic status. This involved phenotypic testing and fatty acid analysis paired with phylogenetic analyses of 16S rRNA and housekeeping gene sequences, as well as phylogenomic analysis of whole genome sequences. Phylogenomic and phylogenetic analyses consistently demonstrated that the 16 isolates could be separated into two distinct clusters in a monophyletic clade situated between the genera Cedecea and Buttiauxella. The two clusters could be genotypically and phenotypically differentiated from each other and from their closest neighbours. As such we propose the description of Dryocola boscaweniae gen. nov. sp. nov. (type strain H6W4T = CCUG 76177T = LMG 32610T) and Dryocola clanedunesis sp. nov. (type strain H11S18T = CCUG 76181T = LMG 32611T).


Subject(s)
Quercus , Sequence Analysis, DNA , Quercus/microbiology , Rhizosphere , Phylogeny , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques , DNA, Bacterial/genetics , Nucleic Acid Hybridization , Enterobacteriaceae , Fatty Acids
4.
BMC Microbiol ; 22(1): 289, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36460957

ABSTRACT

BACKGROUND: Acute Oak Decline (AOD) is a decline disease first reported on native oaks in the UK, but in recent years reports from further afield such as Europe and the Middle East, indicate that the distribution and host range is increasing at an alarming rate. The stem weeping symptoms of the disease partially develop due to polymicrobial-host interaction, caused by several members of the order Enterobacterales. While investigating the rhizosphere soil of AOD-unaffected trees, termed 'healthy' trees, and diseased oaks suffering from Acute Oak Decline (AOD), an enrichment method designed for enhanced recovery of Enterobacterales led to the recovery of several isolates that could not be classified as any existing species. These isolates showed a close relationship to the genus Leclercia, of which both species are of clinical importance, but the type species Leclercia adecarboxylata also displays plant growth-promoting properties in the rhizosphere. RESULTS: Partial sequencing of four housekeeping genes revealed similarity to the genus Leclercia with varying degrees of relatedness. As such a complete polyphasic approach was used to determine the true taxonomic position of these isolates. This involved whole genome sequencing, phylogenomic analysis, phylogenetic analysis of both the 16S rRNA and four housekeeping gene sequences, combined with phenotypic testing and fatty acid analysis. Both the phylogenomic and phylogenetic analyses separated the isolates into four clusters, two of which were contained in the Leclercia clade. The remaining two clusters formed a separate lineage far removed from any currently defined species. Further investigation into the role of the isolates as plant growth-promoting bacteria as well as plant pathogens was investigated computationally, revealing a number of plant growth-promoting traits as well as virulence genes related to motility, adhesion and immune modulation. CONCLUSION: Based on the genotypic and phenotypic data presented here, these isolates could be differentiated from each other and their closest neighbours. As such we propose the description of Leclercia tamurae sp. nov. (type strain H6S3T = LMG 32609T = CCUG 76176T), Silvania gen. nov., Silvania hatchlandensis sp. nov. (type strain H19S6T = LMG 32608T = CCUG 76185T) and Silvania confinis sp. nov. (type strain H4N4T = LMG 32607T = CCUG 76175T). Due to their interesting protein annotations and alignments, these species warrant further investigation for their role in relation to plant health.


Subject(s)
Gammaproteobacteria , Quercus , Rhizosphere , Phylogeny , RNA, Ribosomal, 16S/genetics , Enterobacteriaceae/genetics
5.
Front Microbiol ; 13: 1063107, 2022.
Article in English | MEDLINE | ID: mdl-36466697

ABSTRACT

Following a screening campaign of bleeding cankers of broadleaf hosts in Great Britain, numerous bacterial strains were isolated, identified by 16S rRNA and protein-coding gene sequencing and ultimately classified. During the course of the study, several Gram-negative, facultatively anaerobic strains were isolated from bleeding Platanus x acerifolia (London plane) and Tilia x europaea (common lime) cankers that could not be assigned to an existing species. Partial 16S rRNA gene sequencing placed these strains in the genus Erwinia, as a close phylogenetic relative of Erwinia toletana. In an effort to determine the taxonomic position of the strains, a polyphasic approach was followed including genotypic, genomic, phenotypic, and chemotaxonomic assays. Multilocus sequence analysis based on four protein-coding genes (gyrB, rpoB, infB, and atpD) confirmed the phylogenetic position of the strains as a novel taxon of subgroup 3 of the genus Erwinia, along with E. toletana and E. iniecta, and furthermore, provided support for their reclassification in a novel genus. Whole genome comparisons allowed the delimitation of the novel species and also supported the proposed transfer of subgroup 3 species to a novel genus in the Erwiniaeae. Phenotypically the novel species could be differentiated from E. toletana and E. iniecta, and the novel genus could be differentiated from the closely related genera Erwinia and Mixta. Therefore, we propose (1) the reclassification of E. toletana and E. iniecta in a novel genus, Winslowiella gen. nov., as Winslowiella toletana comb. nov. and Winslowiella iniecta comb. nov., with W. toletana comb. nov. as the type species (type strain A37T = CFBP 6631T = ATCC 700880T = CECT 5263T), and (2) classification of the novel strains as Winslowiella arboricola sp. nov. (type strain BAC 15a-03bT = LMG 32576T = NCPPB 4696T).

6.
Front Microbiol ; 13: 1011653, 2022.
Article in English | MEDLINE | ID: mdl-36304948

ABSTRACT

While investigating the bacterial populations of environmental samples taken from a mix of healthy and Acute Oak Decline afflicted Quercus robur (pedunculate or English oak) rhizosphere soil samples and swabs of bleeding lesions on Tilia spp. (lime) and Quercus rubra (red oak) trees, several strains belonging to the order Enterobacterales were isolated using selective media and enrichment broth. Seven strains from the Q. robur rhizosphere, three strains from Tilia spp. and one from Q. rubra were investigated, with their taxonomic status determined via a polyphasic taxonomic approach. Initially stains were identified as potential members of the recently described genus Scandinavium, based on the partial sequencing of three housekeeping genes. Further analysis of phenotypic traits, including fatty acid profiles, coupled with 16S rRNA gene and phylogenomic analysis of whole genome sequences were applied to a subset of the strains. Phylogenetic and phylogenomic analysis repeatedly placed the isolates in a monophyletic clade within Scandinavium, with four distinct clusters observed, one of which corresponded to Scandinavium goeteborgense, the type species of the genus. The remaining three clusters could be phenotypically and genotypically differentiated from each other and S. goeteborgense. As such, we describe three novel species of the genus, for which we propose the names Scandinavium hiltneri sp. nov. (type strain H11S7T = LMG 32612T = CCUG 76179T), Scandinavium manionii sp. nov. (type strain H17S15T = LMG 32613T = CCUG 76183T) and Scandinavium tedordense sp. nov. (type strain TWS1aT = LMG 32614T = CCUG 76188T). Additionally, the descriptions of the genus Scandinavium and the type species, S. goeteborgense, are emended.

7.
J Med Virol ; 93(1): 409-415, 2021 01.
Article in English | MEDLINE | ID: mdl-32589756

ABSTRACT

BACKGROUND: Identification of risk factors of severe coronavirus disease 2019 (COVID-19) is critical for improving therapies and understanding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis. We analyzed 184 patients hospitalized for COVID-19 in Livingston, New Jersey for clinical characteristics associated with severe disease. The majority of patients with COVID-19 had diabetes mellitus (DM) (62.0%), Pre-DM (23.9%) with elevated fasting blood glucose (FBG), or a body mass index >30 with normal hemoglobin A1c (HbA1C) (4.3%). SARS-CoV-2 infection was associated with new and persistent hyperglycemia in 29 patients, including several with normal HbA1C levels. Forty-four patients required intubation, which occurred significantly more often in patients with DM as compared with non-diabetics. Severe COVID-19 occurs in the presence of impaired glucose metabolism in patients, including those with DM, preDM, and obesity. COVID-19 is associated with elevated FBG and several patients presented with new onset DM or in DKA. The association of dysregulated glucose metabolism and severe COVID-19 suggests that SARS-CoV-2 pathogenesis involves a novel interplay with glucose metabolism. Exploration of pathways by which SARS-CoV-2 interacts glucose metabolism is critical for understanding disease pathogenesis and developing therapies.


Subject(s)
COVID-19/complications , Diabetes Complications/metabolism , Glucose/metabolism , Obesity/metabolism , Prediabetic State/metabolism , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Aging , Blood Glucose , Body Mass Index , COVID-19/metabolism , Female , Glycated Hemoglobin , Humans , Male , Middle Aged , Obesity/complications , Prediabetic State/complications , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...