Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant Dis ; 107(9): 2679-2686, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36774565

ABSTRACT

The resurged interest in cultivation of Cannabis sativa has presented an array of new challenges. Among them are the difficult-to-control pests and pathogens that infect cannabis plants. The limited methods for disease control available to cannabis growers necessitates early detection of plant pathogens, something that molecular techniques such as DNA sequencing has greatly improved. This study reports for the first time the fungal plant pathogen Berkeleyomyces rouxiae causing black root rot in high THC-containing cannabis. Aeroponically grown cannabis plants at a licenced production facility in Cranbrook BC, Canada, rapidly displayed root discoloration and rot symptoms despite testing negative for all commercially available pathogen tests. Developing sequencing-based disease diagnostics requires genomic information, so this study presents the first whole genome sequence of the multihost, widespread black root rot pathogen B. rouxiae. Hybrid genome assembly using Oxford Nanopore long-reads and Illumina short-reads yielded a genome size of 28.2 Mb represented over 404 contigs with an N50 of 267 kb. Genome annotation predicted 6,960 protein-coding genes with 59,477 functional annotations. The availability of this genome will assist in sequence-based diagnostic development, comparative genomics, and taxonomic resolution of this globally important plant pathogen.


Subject(s)
Ascomycota , Cannabis , Cannabis/genetics , Ascomycota/genetics , Sequence Analysis, DNA/methods , Genomics , Plants
2.
Front Plant Sci ; 12: 699157, 2021.
Article in English | MEDLINE | ID: mdl-34349773

ABSTRACT

The isoprenoids play important ecological and physiological roles in plants. They also have a tremendous impact on human lives as food additives, medicines, and industrial raw materials, among others. Though some isoprenoids are highly abundant in nature, plants produce many at extremely low levels. Glandular trichomes (GT), which cover the aerial parts of more than 25% of vascular plants, have been considered as natural biofactories for the mass production of rare industrially important isoprenoids. In several plant genera (e.g., Lavandula and Mentha), GTs produce and store large quantities of the low molecular weight isoprenoids, in particular mono- and sesquiterpenes, as essential oil constituents. Within each trichome, a group of secretory cells is specialized to strongly and specifically express isoprenoid biosynthetic genes, and to synthesize and deposit copious amounts of terpenoids into the trichome's storage reservoir. Despite the abundance of certain metabolites in essential oils and defensive resins, plants, particularly those lacking glandular trichomes, accumulate small quantities of many of the biologically active and industrially important isoprenoids. Therefore, there is a pressing need for technologies to enable the mass production of such metabolites, and to help meet the ever-increasing demand for plant-based bioproducts, including medicines and renewable materials. Considerable contemporary research has focused on engineering isoprenoid metabolism in GTs, with the goal of utilizing them as natural biofactories for the production of valuable phytochemicals. In this review, we summarize recent advances related to the engineering of isoprenoid biosynthetic pathways in glandular trichomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...