Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Environ Sci Technol ; 53(3): 1706-1714, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30583696

ABSTRACT

Over the past two decades vehicle emission standards in the United States have been dramatically tightened with the goal of reducing urban air pollution. Secondary organic aerosol (SOA) is the dominant contributor to urban organic aerosol. Experiments were conducted at the California Air Resources Board Haagen-Smit Laboratory to characterize exhaust organics from 20 gasoline vehicles recruited from the California in-use fleet. The vehicles spanned a wide range of emission certification standards. We comprehensively characterized intermediate volatility and semivolatile organic compound emissions using thermal desorption two-dimensional gas-chromatography-mass-spectrometry with electron impact (GC × GC-EI-MS) and vacuum-ultraviolet (GC × GC-VUV-MS) ionization. Single-ring aromatic compounds with unsaturated C4 and C5 substituents contribute a large fraction of the intermediate volatility organic compound (IVOC) emissions in gasoline vehicle exhaust. The analyses of quartz filters used in GC × GC-VUV-MS show that primary organic aerosol emissions were dominated by motor oil. We combined our new emissions data with published SOA yield parametrizations to estimate SOA formation potential. After 24 h of oxidation, IVOC emissions contributed 45% of  SOA formation;  BTEX compounds (benzene, toluene, xylenes, and ethylbenzene), 40%;  other VOC aromatics, 15%. The composition of IVOC emissions was consistent across the test fleet, suggesting that future reductions in vehicular emissions will continue to reduce SOA formation and ambient particulate mass levels.


Subject(s)
Air Pollutants , Gasoline , Aerosols , California , Vehicle Emissions , Volatilization
3.
Environ Sci Technol ; 51(11): 6542-6552, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28441489

ABSTRACT

Recent increases in the Corporate Average Fuel Economy standards have led to widespread adoption of vehicles equipped with gasoline direct-injection (GDI) engines. Changes in engine technologies can alter emissions. To quantify these effects, we measured gas- and particle-phase emissions from 82 light-duty gasoline vehicles recruited from the California in-use fleet tested on a chassis dynamometer using the cold-start unified cycle. The fleet included 15 GDI vehicles, including 8 GDIs certified to the most-stringent emissions standard, superultra-low-emission vehicles (SULEV). We quantified the effects of engine technology, emission certification standards, and cold-start on emissions. For vehicles certified to the same emissions standard, there is no statistical difference of regulated gas-phase pollutant emissions between PFIs and GDIs. However, GDIs had, on average, a factor of 2 higher particulate matter (PM) mass emissions than PFIs due to higher elemental carbon (EC) emissions. SULEV certified GDIs have a factor of 2 lower PM mass emissions than GDIs certified as ultralow-emission vehicles (3.0 ± 1.1 versus 6.3 ± 1.1 mg/mi), suggesting improvements in engine design and calibration. Comprehensive organic speciation revealed no statistically significant differences in the composition of the volatile organic compounds emissions between PFI and GDIs, including benzene, toluene, ethylbenzene, and xylenes (BTEX). Therefore, the secondary organic aerosol and ozone formation potential of the exhaust does not depend on engine technology. Cold-start contributes a larger fraction of the total unified cycle emissions for vehicles meeting more-stringent emission standards. Organic gas emissions were the most sensitive to cold-start compared to the other pollutants tested here. There were no statistically significant differences in the effects of cold-start on GDIs and PFIs. For our test fleet, the measured 14.5% decrease in CO2 emissions from GDIs was much greater than the potential climate forcing associated with higher black carbon emissions. Thus, switching from PFI to GDI vehicles will likely lead to a reduction in net global warming.


Subject(s)
Aerosols , Gasoline , Vehicle Emissions , Air Pollutants , California , Certification , Climate , Motor Vehicles
4.
Environ Sci Technol ; 50(24): 13592-13599, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27993057

ABSTRACT

Experiments were conducted at the California Air Resources Board Haagen-Smit Laboratory to understand changes in vehicle emissions in response to stricter emissions standards over the past 25 years. Measurements included a wide range of volatile organic compounds (VOCs) for a wide range of spark ignition gasoline vehicles meeting varying levels of emissions standards, including all certifications from Tier 0 up to Partial Zero Emission Vehicle. Standard gas chromatography (GC) and high performance liquid chromatography (HLPC) analyses were employed for drive-cycle phase emissions. A proton-transfer-reaction mass spectrometer measured time-resolved emissions for a wide range of VOCs. Cold-start emissions occur almost entirely in the first 30-60 s for newer vehicles. Cold-start emissions have compositions that are not significantly different across all vehicles tested and are markedly different from neat fuel. Hot-stabilized emissions have varying importance depending on species and may require a driving distance of 200 miles to equal the emissions from a single cold start. Average commute distances in the U.S. suggest the majority of in-use vehicles have emissions dominated by cold starts. The distribution of vehicle ages in the U.S. suggests that within several years only a few percent of vehicles will have significant driving emissions compared to cold-start emissions.


Subject(s)
Air Pollutants , Motor Vehicles , Gasoline , Vehicle Emissions , Volatile Organic Compounds
5.
Environ Sci Technol ; 47(24): 14137-46, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24261886

ABSTRACT

Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.


Subject(s)
Aerosols/analysis , Gases/chemistry , Gasoline/analysis , Off-Road Motor Vehicles , Organic Chemicals/analysis , Particulate Matter/chemistry , Los Angeles , Methane/analysis , Smog/analysis , Vehicle Emissions/analysis
6.
Environ Sci Technol ; 39(19): 7638-49, 2005 Oct 01.
Article in English | MEDLINE | ID: mdl-16245838

ABSTRACT

The number of heavy-duty vehicles using alternative fuels such as compressed natural gas (CNG) and new low-sulfur diesel fuel formulations and equipped with after-treatment devices are projected to increase. However, few peer-reviewed studies have characterized the emissions of particulate matter (PM) and other toxic compounds from these vehicles. In this study, chemical and biological analyses were used to characterize the identifiable toxic air pollutants emitted from both CNG and low-sulfur-diesel-fueled heavy-duty transit buses tested on a chassis dynamometer over three transient driving cycles and a steady-state cruise condition. The CNG bus had no after-treatment, and the diesel bus was tested first equipped with an oxidation catalyst (OC) and then with a catalyzed diesel particulate filter (DPF). Emissions were analyzed for PM, volatile organic compounds (VOCs; determined on-site), polycyclic aromatic hydrocarbons (PAHs), and mutagenic activity. The 2000 model year CNG-fueled vehicle had the highest emissions of 1,3-butadiene, benzene, and carbonyls (e.g., formaldehyde) of the three vehicle configurations tested in this study. The 1998 model year diesel bus equipped with an OC and fueled with low-sulfur diesel had the highest emission rates of PM and PAHs. The highest specific mutagenic activities (revertants/microg PM, or potency) and the highest mutagen emission rates (revertants/mi) were from the CNG bus in strain TA98 tested over the New York Bus (NYB) driving cycle. The 1998 model year diesel bus with DPF had the lowest VOCs, PAH, and mutagenic activity emission. In general, the NYB driving cycle had the highest emission rates (g/mi), and the Urban Dynamometer Driving Schedule (UDDS) had the lowest emission rates for all toxics tested over the three transient test cycles investigated. Also, transient emissions were, in general, higher than steady-state emissions. The emissions of toxic compounds from an in-use CNG transit bus (without an oxidation catalyst) and from a vehicle fueled with low-sulfur diesel fuel (equipped with DPF) were lower than from the low-sulfur diesel fueled vehicle equipped with OC. All vehicle configurations had generally lower emissions of toxics than an uncontrolled diesel engine. Tunnel backgrounds (measurements without the vehicle running) were measured throughout this study and were helpful in determining the incremental increase in pollutant emissions. Also, the on-site determination of VOCs, especially 1,3-butadiene, helped minimize measurement losses due to sample degradation after collection.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/statistics & numerical data , Fossil Fuels , Motor Vehicles , Polycyclic Aromatic Hydrocarbons/analysis , Vehicle Emissions/analysis , Air Pollutants/toxicity , Bacteria/drug effects , Biological Assay , DNA Damage , Gas Chromatography-Mass Spectrometry , Mutagenicity Tests , Particle Size , Polycyclic Aromatic Hydrocarbons/toxicity , Vehicle Emissions/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...