Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Case Rep ; 15(1): 90, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33608053

ABSTRACT

BACKGROUND: Very little is known about the risk that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection poses to cancer patients, many of whom are immune compromised causing them to be more susceptible to a host of infections. As a precautionary measure, many clinical studies halted enrollment during the initial surge of the global Novel Coronavirus Disease (COVID-19) pandemic. In this case report, we detail the successful treatment of a relapsed and refractory multiple myeloma (MM) patient treated with an anti-B cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T cell therapy immediately following clinical recovery from COVID-19. CASE PRESENTATION: The 57 year old Caucasian male patient had a 4-year history of MM and was considered penta-refractory upon presentation for CAR T cell therapy. He had a history of immunosuppression and received one dose of lymphodepleting chemotherapy (LDC) the day prior to COVID-19 diagnosis; this patient was able to mount a substantial immune response against the SARS-CoV-2 virus, and antiviral antibodies remain detectable 2 months after receiving anti-BCMA CAR T cell therapy. The recent SARS-CoV-2 infection in this patient did not exacerbate CAR T-associated cytokine release syndrome (CRS) and conversely the CAR T cell therapy did not result in COVID-19-related complications. One month after CAR T cell infusion, the patient was assessed to have an unconfirmed partial response per International Myeloma Working Group (IMWG) criteria. CONCLUSION: Our case adds important context around treatment choice for MM patients in the era of COVID-19 and whether CAR T therapy can be administered to patients who have recovered from COVID-19. As the COVID-19 global pandemic continues, the decision of whether to proceed with CAR T cell therapy will require extensive discussion weighing the potential risks and benefits of therapy. This case suggests that it is possible to successfully complete anti-BCMA CAR T cell therapy after recovery from COVID-19. CRB-402 study registered 6 September 2017 at clinicaltrials.gov (NCT03274219).


Subject(s)
B-Cell Maturation Antigen/immunology , COVID-19/physiopathology , Immunotherapy, Adoptive/methods , Multiple Myeloma/therapy , Receptors, Chimeric Antigen/immunology , Antibodies, Viral/immunology , COVID-19/complications , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Cough , Cyclophosphamide/therapeutic use , Disease Progression , Fever , Hospitalization , Humans , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Multiple Myeloma/complications , SARS-CoV-2 , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use
2.
Int J Artif Organs ; 31(11): 970-82, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19089799

ABSTRACT

We are developing a collapsible, percutaneously inserted, axial flow blood pump to support the cavopulmonary circulation in infants with a failing single ventricle physiology. An initial design of the impeller for this axial flow blood pump was performed using computational fluid dynamics analysis, including pressure-flow characteristics, scalar stress estimations, blood damage indices, and fluid force predictions. A plastic prototype was constructed for hydraulic performance testing, and these experimental results were compared with the numerical predictions. The numerical predictions and experimental findings of the pump performance demonstrated a pressure generation of 2-16 mm Hg for 50-750 ml/min over 5,500-7,500 RPM with deviation found at lower rotational speeds. The axial fluid forces remained below 0.1 N, and the radial fluid forces were determined to be virtually zero due to the centered impeller case. The scalar stress levels remained below 250 Pa for all operating conditions. Blood damage analysis yielded a mean residence time of the released particles, which was found to be less than 0.4 seconds for both flow rates that were examined, and a maximum residence time was determined to be less than 0.8 seconds. We are in the process of designing a cage with hydrodynamically shaped filament blades to act as a diffuser and optimizing the impeller blade shape to reduce the flow vorticity at the pump outlet. This blood pump will improve the clinical treatment of patients with failing Fontan physiology and provide a unique catheter-based therapeutic approach as a bridge to recovery or transplantation.


Subject(s)
Cardiac Catheterization/instrumentation , Heart Defects, Congenital/therapy , Heart-Assist Devices , Hemodynamics , Pulmonary Circulation , Computer Simulation , Fontan Procedure , Heart Defects, Congenital/physiopathology , Heart-Assist Devices/adverse effects , Humans , Infant , Infant, Newborn , Materials Testing , Models, Cardiovascular , Numerical Analysis, Computer-Assisted , Prosthesis Design , Prosthesis Failure , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...