Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Mol Model ; 30(7): 220, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902588

ABSTRACT

CONTEXT: The s-block metals dissolved in ammonia form metal-ammonia complexes with diffuse electrons which could be used for redox catalysis. In this theoretical paper, we investigated the possibility of the d-bloc transition metals (Mn, Fe, Co, Ni, and Cu) solvated by ammonia. It has been demonstrated that both Mn and Fe atoms undergo into an oxidative reaction with NH3 forming an inserted species, HMNH2. On the contrary, the Co, Ni, and Cu atoms can accommodate four NH3, via the coordination bond, to form the first solvation sphere within C2v, D2d, and Td point groups, respectively. Addition of a fifth NH3 constitute the second solvation shell by forming hydrogen bond with the other NH3s. Interestingly, M(NH3)4 (M = Co, Ni, and Cu) is a so-called solvated electron precursor and should be considered as a monocation M(NH3)4+ kernel in tight contact with one electron distributed over its periphery. This nearly free electron could be used to capture a CO2 molecule and engages in a reduction reaction. METHODS: Geometry optimization of the stationary points on the potential energy surface was performed using density functional theory - CAM-B3LYP functional including the GD3BJ dispersion contribution - in combination with the 6-311 + + G(2d, 2p) basis set for all the atoms. All first-principles calculations were performed using the Gaussian 09 quantum chemical packages. The natural electron configuration of transition atom engaged in the compounds has been found using the natural bond orbital (NBO) method. We used the EDR (electron delocalization range) approach to analyze the structure of solvated electrons in real space. We also used the electron localization function (ELF) to measure the degree of electronic localization within a chemical compound. The EDR and ELF analyses are done using the TopMod and Multiwfn packages, respectively.

2.
J Chem Theory Comput ; 16(11): 7089-7099, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32871074

ABSTRACT

A new reactive force field based on the ReaxFF formalism is effectively parametrized against an extended training set of quantum chemistry data (containing more than 120 different structures) to describe accurately silver and silver-thiolate systems. The results obtained with this novel representation demonstrate that the novel ReaxFF paradigm is a powerful methodology to reproduce more appropriately average geometric and energetic properties of metal clusters and slabs when compared to the earlier ReaxFF parametrizations dealing with silver and gold. ReaxFF cannot describe adequately specific geometrical features such as the observed shorter distances between the under-coordinated atoms at the cluster edges. Geometric and energetic properties of thiolates adsorbed on a silver Ag20 pyramid are correctly represented by the new ReaxFF and compared with results for gold. The simulation of self-assembled monolayers of thiolates on a silver (111) surface does not indicate the formation of staples in contrast to the results for gold-thiolate systems.

3.
J Chem Phys ; 145(22): 224313, 2016 Dec 14.
Article in English | MEDLINE | ID: mdl-27984904

ABSTRACT

The Fourier transform IR vibrational spectra of amino-ethanol (AE) and its dimer have been recorded at room temperature and under jet-cooled conditions over the far and mid infrared ranges (50-4000 cm-1) using the White-type cell and the supersonic jet of the Jet-AILES apparatus at the synchrotron facility SOLEIL. Assignment of the monomer experimental frequencies has been derived from anharmonic frequencies calculated at a hybrid CCSD(T)-F12/MP2 level. Various thermodynamical effects in the supersonic expansion conditions including molar dilution of AE and nature of carrier gas have been used to promote or not the formation of dimers. Four vibrational modes of the observed dimer have been unambiguously assigned using mode-specific scaling factors deduced from the ratio between experimental and computed frequencies for the monomer. The most stable g'Gg' monomer undergoes strong deformation upon dimerization, leading to a homochiral head to head dimer involving two strong hydrogen bonds.

4.
Phys Chem Chem Phys ; 16(6): 2430-42, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24358473

ABSTRACT

The analysis of interactions in complexes of S(CN)2, Se(CN)2, SFCl and SeFCl with F(-) and Cl(-) anions is performed here. The sulphur and selenium atoms act in these complexes as Lewis acid centres interacting with fluorine and chlorine anions. The arrangement of sub-units in complexes is in agreement with the σ-hole concept; particularly it is a result of contacts between positive and negative electrostatic potential sites. The interactions in complexes analyzed may be classified as very strong charge assisted chalcogen bonds and they possess numerous characteristics typical for covalent bonds. Even in the case of complexes of SFCl and SeFCl, i.e. SFCl2(-) and SeFCl2(-), the trivalency of the chalcogen atom is observed. The calculations were carried out at the MP2(full)/aug-cc-pVTZ level of approximation, the analyses were performed with the use of the Natural Bond Orbital (NBO) method, the Quantum Theory of 'Atoms in Molecules' (QTAIM) and the Electron Localization Function (ELF) approach. The results obtained by these methods are in agreement giving the consistent picture of the complexes' configurations and their electron charge distribution. The QTAIM and ELF approaches allow us to predict for S(CN)2, Se(CN)2, SFCl and SeFCl molecules the directions of nucleophilic attack. They are in line with the prediction based on the σ-hole concept. The Symmetry Adapted Perturbation Theory (SAPT) approach was also applied.

5.
J Phys Chem A ; 117(47): 12569-80, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24148008

ABSTRACT

The microwave (4-20 GHz range) and infrared (HCl and DCl stretch ranges) spectra of six isotopic species of the CH3Cl-HCl hydrogen bond complex have been recorded for the first time and analyzed with the support of high level ab initio calculations (MP2 and CCSD(T) levels). Accurate molecular parameters, including rotational, quartic centrifugal distortion, and nuclear-quadrupole coupling constants, vibrational frequencies, and anharmonic coupling constants, are presented in this paper. These parameters have then been used to estimate the hydrogen bond geometry and confirm the strong coupling between intramolecular and low frequency intermolecular modes. Experimental and theoretical evidence, in agreement with each other, tend to point out a free rotation of the CH3Cl unit in the complex, emphasizing the very peculiar dynamical properties of a hydrogen bond and, consequently, the necessity of taking those effects into account to correctly model the intra- and intermolecular interactions.


Subject(s)
Deuterium/chemistry , Hydrochloric Acid/chemistry , Methyl Chloride/chemistry , Thermodynamics , Hydrogen Bonding , Molecular Structure , Quantum Theory , Spectroscopy, Fourier Transform Infrared
6.
J Phys Chem A ; 117(21): 4462-71, 2013 May 30.
Article in English | MEDLINE | ID: mdl-23627446

ABSTRACT

Two OTi-N2 complexes, experimentally observed in the TiO + N2 reaction, have been theoretically studied using several density functionals as well as ab initio approaches and various basis sets. The benchmark results calculated with coupled-cluster singles, doubles, and perturbative triples CCSD(T) and sufficiently large correlation-consistent basis set were used to assess the performance of other theoretical models, especially four density functional families, pure functional, hybrid, double-hybrid, and long-range corrected ones. It has been shown that, out of twenty-three density functionals used in this work, only three functionals, namely TPSS0, LC-TPSS, and B2PLYP, are able to reproduce the CC-reference data quantitatively. Particularly, the B2PLYP double-hybrid (with or without addition of empirical dispersion) is the most promising functional, providing the closest results to the reference ones. The nature of bonding within products has been investigated using two topological techniques and a localized orbital approach.

7.
J Phys Chem A ; 117(8): 1697-705, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23350717

ABSTRACT

The reaction of atomic titanium with nitrous oxide has been reinvestigated using matrix isolation in solid neon coupled to infrared spectroscopy and by quantum chemical methods. Our technique of sublimation of Ti atoms from a filament heated at about 1500 °C allowed the formation of three species: one Ti-N(2)O pair of van der Waals (vdW) type characterized by small red shift with respect to N(2)O monomer, and two isomers of OTi-N(2) pair where N(2) is in interaction with the OTi moiety either with end-on or side-on structure. Interconversion between these structures has been performed with several wavelengths. In the visible and near-ultraviolet the conversion vdW → OTi-N(2) (end-on) is observed with characteristic times strongly varying according to the wavelength. In the near-infrared the conversion OTi-N(2) (end-on) → OTi-N(2) (side-on) occurs, the vdW species remaining unchanged. These selectivities allow 8, 6, and 4 vibrational transitions to be assigned for vdW, (3)[OTi(η(1)-NN)] (end-on), and (1)[OTi(η(2)-NN)] (side-on), respectively. Electronic and geometrical structures are also investigated with double-hybrid functionals. It has been shown that the side-on geometry corresponds to the ground state of (1)[OTi(η(2)-NN)] in the singlet electronic state. The theoretical vibrational analysis supports well the experimental attributions.

8.
Beilstein J Nanotechnol ; 2: 427-47, 2011.
Article in English | MEDLINE | ID: mdl-22003450

ABSTRACT

We present a theoretical framework for the computation of anharmonic vibrational frequencies for large systems, with a particular focus on determining adsorbate frequencies from first principles. We give a detailed account of our local implementation of the vibrational self-consistent field approach and its correlation corrections. We show that our approach is both robust, accurate and can be easily deployed on computational grids in order to provide an efficient computational tool. We also present results on the vibrational spectrum of hydrogen fluoride on pyrene, on the thiophene molecule in the gas phase, and on small neutral gold clusters.

9.
Phys Chem Chem Phys ; 9(22): 2868-76, 2007 Jun 14.
Article in English | MEDLINE | ID: mdl-17538732

ABSTRACT

The rotationally resolved Fourier transform infrared (FTIR) spectrum of the nu(s) HCl and DCl stretching bands for the hydrogen bonded complex H2S-HCl and its isotopomer D2S-DCl have been observed in a supersonic jet at 0.02 cm(-1) resolution. In the same experimental conditions, two additional bands observed without rotational structure in the HCl range of the dimer have been assigned to the cyclic trimer H2S-(HCl)(2). The multidimensional coupling picture involving the donor stretch mode nu(s) and low frequency intermolecular modes already evidenced in several medium strength hydrogen bonded complexes is beautifully confirmed by the observation of completely separated hot band progressions in the 198 K cell spectrum of both dimers. Based on our anharmonic adiabatic approach for the treatment of the coupled vibrations, absolute vibrational frequencies, diagonal and off-diagonal anharmonicities as well as rovibrational coupling constants obtained from analyses of several 2-D subspaces at MP2 and CCSD(T) level are in excellent agreement with spectroscopic results. In the case of small light complexes, the combination of elevated rotational constants and a negligible contribution of intramolecular vibrational redistribution (IVR) improve the reliability of predissociation lifetime measurements, estimated to 180 ps for H2S-HCl and above 200 ps for D2S-DCl.


Subject(s)
Acids/chemistry , Deuterium/chemistry , Hydrochloric Acid/chemistry , Hydrogen Sulfide/chemistry , Models, Chemical , Models, Molecular , Spectroscopy, Fourier Transform Infrared/methods , Computer Simulation
10.
Phys Chem Chem Phys ; 8(15): 1785-93, 2006 Apr 21.
Article in English | MEDLINE | ID: mdl-16633663

ABSTRACT

The rotationally resolved infrared spectrum of the hydrogen bonded complex H(2)S-HF and of its isotopomer D(2)S-DF in the HF/DF stretching range have been observed in a supersonic jet Fourier-transform infrared (FTIR) experiment and indicate a predissociation lifetime of 130 ps for H(2)S-HF. Complementary spectra taken at a temperature of 190 K in a cell without resolved rotational structure indicate the presence of strong anharmonic couplings between low frequency intermolecular modes and the HF donor stretch mode previously observed in other complexes with heavier acceptor molecules without rotational fine structure. The anharmonic analysis of the hot band progressions and of the rotational data confirm the coupling mechanism. The coupling constants and the absolute frequency of the hydrogen bonded stretch mode are in excellent agreement with theoretical predictions based on adiabatic variational calculations on potential surfaces computed at MP2 and CCSD(T) level. Complementary calculations with a perturbational approach further confirm the coupling model.


Subject(s)
Computer Simulation , Hydrofluoric Acid/chemistry , Hydrogen Sulfide/chemistry , Hydrogen Bonding , Quantum Theory , Spectroscopy, Fourier Transform Infrared/methods , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...