Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 32(5): 664-70, 2016 May.
Article in English | MEDLINE | ID: mdl-27132030

ABSTRACT

PURPOSE: Static beam intensity-modulated-radiation-therapy (IMRT) and/or Volumetric-Modulated-Arc-Therapy (VMAT) are now available in many regional radiotherapy departments. The aim of this multi-institutional audit was to design a new methodology based on radiochromic films to perform an independent quality control. METHODS: A set of data were sent to all participating centres for two clinical localizations: prostate and Head and Neck (H&N) cancers. The agreement between calculations and measurements was verified in the Octavius phantom (PTW) by point measurements using ionization chambers and by 2D measurements using EBT3 radiochromic films. Due to uncertainties in the whole procedure, criteria were set to 5% and 3% in local dose and 3mm in distance excluding doses lower than 10% of the maximum doses. No normalization point or area was used for the quantitative analysis. RESULTS: 13 radiotherapy centres participated in this audit involving 28 plans (12 IMRT, 16 VMAT). For point measurements, mean errors were -0.18±1.54% and 0.00±1.58% for prostate and H&N cases respectively. For 2D measurements with 5%/3mm criteria, gamma map analysis showed a pixel pass rate higher than 95% for prostate and H&N. Mean gamma index was lower than 0.4 for prostate and 0.5 for H&N. Both techniques yielded similar results. CONCLUSION: This study showed the feasibility of an independent quality control by peers for conventional IMRT and VMAT. Results from all participating centres were found to be in good agreement. This regional study demonstrated the feasibility of our new methodology based on radiochromic films without dose normalization on a specific point.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Prostatic Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Radiotherapy/methods , Calibration , Film Dosimetry , Humans , Image Processing, Computer-Assisted , Male , Phantoms, Imaging , Quality Control , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Rotation
2.
Med Phys ; 34(7): 3018-33, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17822010

ABSTRACT

Automatic exposure control (AEC) systems have been developed by computed tomography (CT) manufacturers to improve the consistency of image quality among patients and to control the absorbed dose. Since a multichannel helical CT scan may easily increase individual radiation doses, this technical improvement is of special interest in children who are particularly sensitive to ionizing radiation, but little information is currently available regarding the precise performance of these systems on small patients. Our objective was to assess an AEC system on pediatric dose phantoms by studying the impact of phantom transmission and acquisition parameters on tube current modulation, on the resulting absorbed dose and on image quality. We used a four-channel CT scan working with a patient-size and z-axis-based AEC system designed to achieve a constant noise within the reconstructed images by automatically adjusting the tube current during acquisition. The study was performed with six cylindrical poly(methylmethacrylate) (PMMA) phantoms of variable diameters (10-32 cm) and one 5 years of age equivalent pediatric anthropomorphic phantom. After a single scan projection radiograph (SPR), helical acquisitions were performed and images were reconstructed with a standard convolution kernel. Tube current modulation was studied with variable SPR settings (tube angle, mA, kVp) and helical parameters (6-20 HU noise indices, 80-140 kVp tube potential, 0.8-4 s. tube rotation time, 5-20 mm x-ray beam thickness, 0.75-1.5 pitch, 1.25-10 mm image thickness, variable acquisition, and reconstruction fields of view). CT dose indices (CTDIvol) were measured, and the image quality criterion used was the standard deviation of the CT number measured in reconstructed images of PMMA material. Observed tube current levels were compared to the expected values from Brooks and Di Chiro's [R.A. Brooks and G.D. Chiro, Med. Phys. 3, 237-240 (1976)] model and calculated values (product of a reference value multiplied by a dose ratio measured with thermoluminescent dosimeters). Our study demonstrates that this AEC system accurately modulates the tube current according to phantom size and transmission to achieve a stable image noise. The system accurately controls the tube current when changing tube rotation time, tube potential, or image thickness, with minimal variations of the resulting noise. Nevertheless, CT users should be aware of possible changes of tube current and resulting dose and quality according to several parameters: the tube angle and tube potential used for SPR, the x-ray beam thickness (tube current decreases and image noise increases when doubling x-ray beam thickness), the pitch value (a pitch decrease leads to a higher dose but also to a higher noise), and the acquisition field of view (FOV) (tube current is lower when using the small acquisition FOV compared to the large one, but the use of small acquisition FOV at 120 kVp leads to a peculiar increase of tube current and CTDIvol).


Subject(s)
Noise , Radiation Dosage , Child , Humans , Phantoms, Imaging , Radiographic Image Interpretation, Computer-Assisted , Reproducibility of Results , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...