Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37570199

ABSTRACT

Titanium dioxide (TiO2) in the form of thin films has attracted enormous attention for photocatalysis. It combines the fundamental properties of TiO2 as a large bandgap semiconductor with the advantage of thin films, making it competitive with TiO2 powders for recycling and maintenance in photocatalytic applications. There are many aspects affecting the photocatalytic performance of thin film structures, such as the nanocrystalline size, surface morphology, and phase composition. However, the quantification of each influencing aspect needs to be better studied and correlated. Here, we prepared a series of TiO2 thin films using a sol-gel process and spin-coated on p-type, (100)-oriented silicon substrates with a native oxide layer. The as-deposited TiO2 thin films were then annealed at different temperatures from 400 °C to 800 °C for 3 h in an ambient atmosphere. This sample synthesis provided systemic parameter variation regarding the aspects mentioned above. To characterize thin films, several techniques were used. Spectroscopic ellipsometry (SE) was employed for the investigation of the film thickness and the optical properties. The results revealed that an increasing annealing temperature reduced the film thickness with an increase in the refractive index. Atomic force microscopy (AFM) was utilized to examine the surface morphology, revealing an increased surface roughness and grain sizes. X-ray diffractometry (XRD) and UV-Raman spectroscopy were used to study the phase composition and crystallite size. The annealing process initially led to the formation of pure anatase, followed by a transformation from anatase to rutile as the annealing temperature increased. An overall enhancement in crystallinity was also observed. The photocatalytic properties of the thin films were tested using the photocatalytic decomposition of acetone gas in a home-built solid (photocatalyst)-gas (reactant) reactor. The composition of the gas mixture in the reaction chamber was monitored using in situ Fourier transform infrared spectroscopy. Finally, all of the structural and spectroscopic characteristics of the TiO2 thin films were quantified and correlated with their photocatalytic properties using a correlation matrix. This provided a good overview of which film properties affect the photocatalytic efficiency the most.

2.
Nanoscale Adv ; 4(23): 5102-5108, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36504751

ABSTRACT

We report large exciton tuning in WSe2 monolayers via substrate induced non-degenerate doping. We observe a redshift of ∼62 meV for the A exciton together with a 1-2 orders of magnitude photoluminescence (PL) quenching when the monolayer WSe2 is brought in contact with highly oriented pyrolytic graphite (HOPG) compared to dielectric substrates such as hBN and SiO2. As the evidence of doping from HOPG to WSe2, a drastic increase of the intensity ratio of trions to neutral excitons was observed. Using a systematic PL and Kelvin probe force microscopy (KPFM) investigation on WSe2/HOPG, WSe2/hBN, and WSe2/graphene, we conclude that this unique excitonic behavior is induced by electron doping from the substrate. Our results propose a simple yet efficient way for exciton tuning in monolayer WSe2, which plays a central role in the fundamental understanding and further device development.

3.
Nanomaterials (Basel) ; 11(2)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540743

ABSTRACT

Tip-enhanced Raman spectroscopy (TERS) has experienced tremendous progress over the last two decades. Despite detecting single molecules and achieving sub-nanometer spatial resolution, attaining high TERS sensitivity is still a challenging task due to low reproducibility of tip fabrication, especially regarding very sharp tip apices. Here, we present an approach for achieving strong TERS sensitivity via a systematic study of the near-field enhancement properties in the so-called gap-mode TERS configurations using the combination of finite element method (FEM) simulations and TERS experiments. In the simulation study, a gold tip apex is fixed at 80 nm of diameter, and the substrate consists of 20 nm high gold nanodiscs with diameter varying from 5 nm to 120 nm placed on a flat extended gold substrate. The local electric field distributions are computed in the spectral range from 500 nm to 800 nm with the tip placed both at the center and the edge of the gold nanostructure. The model is then compared with the typical gap-mode TERS configuration, in which a tip of varying diameter from 2 nm to 160 nm is placed in the proximity of a gold thin film. Our simulations show that the tip-nanodisc combined system provides much improved TERS sensitivity compared to the conventional gap-mode TERS configuration. We find that for the same tip diameter, the spatial resolution achieved in the tip-nanodisc model is much better than that observed in the conventional gap-mode TERS, which requires a very sharp metal tip to achieve the same spatial resolution on an extended metal substrate. Finally, TERS experiments are conducted on gold nanodisc arrays using home-built gold tips to validate our simulation results. Our simulations provide a guide for designing and realization of both high-spatial resolution and strong TERS intensity in future TERS experiments.

4.
Phys Rev Lett ; 119(10): 103401, 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28949190

ABSTRACT

The impact of a highly charged ion onto a solid gives rise to charge exchange between the ion and target atoms, so that a slow ion gets neutralized in the vicinity of the surface. Using highly charged Ar and Xe ions and the surface-only material graphene as a target, we show that the neutralization and deexcitation of the ions proceeds on a sub-10 fs time scale. We further demonstrate that a multiple Interatomic Coulombic Decay (ICD) model can describe the observed ultrafast deexcitation. Other deexcitation mechanisms involving nonradiative decay and quasimolecular orbital formation during the impact are not important, as follows from the comparison of our experimental data with the results of first-principles calculations. Our method also enables the estimation of ICD rates directly.

5.
Environ Sci Pollut Res Int ; 20(3): 1849-57, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22828924

ABSTRACT

In the 1970s, a large ambulatory of the National Tile Museum, Lisbon, was closed with glass panes on both ground and first floor. Although this design was meant to protect the museum collection from ambient air pollutants, small openings between the glass panes remain, creating a semi-enclosed corridor. The effects of the glass panes on the indoor air quality were evaluated in a comparative study by monitoring the airborne particle concentration and the extent of particle deposition at the enclosed corridor as well as inside the museum building. Comparison of the indoor/outdoor ratio of airborne particle concentration demonstrated a high natural ventilation rate in the enclosed corridor as well as inside the museum building. PM(10) deposition velocities on vertical surfaces were estimated in the order of 3 × 10(-4) m s(-1) for both indoor locations. Also, the deposition rates of dark-coloured and black particles in specific were very similar at both indoor locations, causing visual degradation. The effectiveness of the glass panes in protecting the museum collection is discussed.


Subject(s)
Air Pollution, Indoor/prevention & control , Facility Design and Construction/methods , Museums , Particulate Matter/analysis , Ventilation/methods , Air Pollution, Indoor/analysis , Ceramics , Environmental Monitoring , Portugal
SELECTION OF CITATIONS
SEARCH DETAIL
...