Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 21(4): 1417-1426, 2020 04 13.
Article in English | MEDLINE | ID: mdl-32109357

ABSTRACT

We show here how the structure of polygalacturonate (polyGalA) hydrogels cross-linked by Ca2+ cations via external gelation controls the loading and release rate of beta-lactoglobulin (BLG), a globular protein. Hydrogels prepared from a polyGalA/BLG solution are found to be similar to those obtained from a polyGalA solution in our previous study (Maire du Poset et al. Biomacromolecules 2019, 20 (7), 2864-2872): they exhibit similar transparencies and gradients of mechanical properties and polyGalA concentrations. The nominal BLG/polyGalA ratio of the mixtures is almost recovered within the whole mixed hydrogel despite such strong concentration gradients, except in the part of the hydrogels with the largest mesh size, where more BLG proteins are present. This gradient enables one to tune the amount of protein loaded within the hydrogel. At a local scale, the proteins are distributed evenly within the hydrogel network, as shown by small-angle neutron scattering (SANS). The release of proteins from hydrogels is driven by Fickian diffusion, and the release rate increases with the mesh size of the network, with a characteristic time of a few hours. The specific structure of these polysaccharide-based hydrogels allows for control of both the dosage and the release rate of the loaded protein and makes them good candidates for use as oral controlled-delivery systems.


Subject(s)
Hydrogels , Lactoglobulins , Calcium , Diffusion , Scattering, Small Angle
2.
Int J Biol Macromol ; 114: 649-655, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29601879

ABSTRACT

To dynamically characterize the thermal properties of the fructose-rich exopolysaccharide (EPS1-T14), produced by the marine thermophilic Bacillus licheniformis T14, the Attenuated Total Reflectance Fourier Transform Infra-Red spectroscopy was coupled to variable temperature ranging from ambient to 80°C. The spectra were analyzed by the following innovative mathematical tools: i) non-ideal spectral deviation, ii) OH-stretching band frequency center shift, iii) spectral distance, and iv) wavelet cross-correlation analysis. The thermal restraint analysis revealed that the whole EPS1-T14 system possessed high stability until 80°C, and suggested that fucose was mainly involved in the EPS1-T14 thermal stability, whereas glucose was responsible for its molecular flexibility. Our results provide novel insights into the thermal stability properties of the whole EPS1-T14 and into the role of its main monosaccharidic units. As a new biopolymer, the thermostable EPS1-T14 could be used in traditional biotechnology fields and in new biomedical areas, as nanocarriers, requiring high temperature processes.


Subject(s)
Bacillus licheniformis/chemistry , Polysaccharides, Bacterial/chemistry , Bacillus licheniformis/growth & development , Hydrothermal Vents/microbiology , Polysaccharides, Bacterial/metabolism
3.
Carbohydr Polym ; 118: 107-14, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25542114

ABSTRACT

Carbon-13 NMR (CP-MAS and FSLG (1)H-(13)C HETCOR) have been applied to chitosan salt films synthesized in acetic acid and exposed to different relative humidity environments (32% or 75%) at 20°C for 1 month. It gives insight in the relationship between structure and functional properties according to the hydration level of this biomaterial as a film. The acetate ions trapped in the chitosan act as structuring agents between chitosan chains for the low hydration state. But, increasing the moisture content induces spontaneous removal of acetic acid and a subsequent modification in the film structure, with an increase in local ordering. HETCOR experiments also showed a multiplicity of signals for most of the observed carbon atoms and in particular those implied in the glycosidic linkage, which reveals different water-induced conformational states. Changing the water content allows to modify the polymer structure and therefore to modulate the properties such as controlled release of active compounds trapped in chitosan-based coatings, e.g., for medicated dressing or active packaging.


Subject(s)
Chitosan/chemistry , Magnetic Resonance Spectroscopy/methods , Polymers/chemistry , Water/chemistry
4.
J Phys Chem B ; 118(1): 330-6, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24354613

ABSTRACT

The nonlinear dependence of polysiloxane cyclization constants (log(K(x))) with ring size (log(x)) is explained by a thermodynamic model that treats specific torsional modes of the macromolecular chains with a classical coupled hindered rotor model. Several parameters such as the dependence of the internal rotation kinetic energy matrix with geometry, the effect of potential energy hindrance, anharmonicity, and the couplings between internal rotors were investigated. This behavior arises from the competing effects of local molecular entropy that is mainly driven by the intrinsic transformation of vibrations in small cycles into hindered rotations in larger cycles and configurational entropy.

SELECTION OF CITATIONS
SEARCH DETAIL
...