Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
High Alt Med Biol ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634740

ABSTRACT

Grimm, Mirjam, Lucie Ziegler, Annina Seglias, Maamed Mademilov, Kamila Magdieva, Gulzada Mirzalieva, Aijan Taalaibekova, Simone Suter, Simon R. Schneider, Fiona Zoller, Vera Bissig, Lukas Reinhard, Meret Bauer, Julian Müller, Tanja L. Ulrich, Arcangelo F. Carta, Patrick R. Bader, Konstantinos Bitos, Aurelia E. Reiser, Benoit Champigneulle, Damira Ashyralieva, Philipp M. Scheiwiller, Silvia Ulrich, Talant M. Sooronbaev, Michael Furian, and Konrad E. Bloch. SARS-CoV-2 Transmission during High-Altitude Field Studies. High Alt Med Biol. 00:00-00, 2024. Background: Throughout the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic, virus transmission during clinical research was of concern. Therefore, during high-altitude field studies performed in 2021, we took specific COVID-19 precautions and investigated the occurrence of SARS-CoV-2 infection. Methods: From May to September 2021, we performed studies in patients with chronic obstructive pulmonary disease (COPD) and in healthy school-age children in Kyrgyzstan in high-altitude facilities at 3,100 m and 3,250 m and at 760 m. The various implemented COVID-19 safety measures included systematic SARS-CoV-2 rapid antigen testing (RAT). Main outcomes were SARS-CoV-2-RAT-positive rate among participants and staff at initial presentation (prevalence) and SARS-CoV-2-RAT-positive conversion during and within 10 days after studies (incidence). Results: Among 338 participants and staff, SARS-CoV-2-RAT-positive prevalence was 15 (4.4%). During mean ± SD duration of individual study participation of 3.1 ± 1.0 day and within 10 days, RAT-positive conversion occurred in 1/237(0.4%) participants. Among staff working in studies for 31.5 ± 29.3 days, SARS-CoV-2-RAT-positive conversion was 11/101(10.9%). In all 338 individuals involved in the studies over the course of 15.6 weeks, the median SARS-CoV-2-RAT-positive incidence was 0.00%/week (quartiles 0.00; 0.64). Over the same period, the median background incidence among the total Kyrgyz population of 6,636 million was 0.06%/week (0.03; 0.11), p = 0.013 (Wilcoxon rank sum test). Conclusions: Taking precautions by implementing specific safety measures, SARS-CoV-2 transmission during clinical studies was very rare, and the SARS-CoV-2 incidence among participants and staff was lower than that in the general population during the same period. The results are reassuring and may help in decision-making on the conduct of clinical research in similar settings.

2.
Front Physiol ; 14: 1160050, 2023.
Article in English | MEDLINE | ID: mdl-37881692

ABSTRACT

Introduction: This prospective cohort study assessed the effects of chronic hypoxaemia due to high-altitude residency on the cerebral tissue oxygenation (CTO) and cerebrovascular reactivity. Methods: Highlanders, born, raised, and currently living above 2,500 m, without cardiopulmonary disease, participated in a prospective cohort study from 2012 until 2017. The measurements were performed at 3,250 m. After 20 min of rest in supine position while breathing ambient air (FiO2 0.21) or oxygen (FiO2 1.0) in random order, guided hyperventilation followed under the corresponding gas mixture. Finger pulse oximetry (SpO2) and cerebral near-infrared spectroscopy assessing CTO and change in cerebral haemoglobin concentration (cHb), a surrogate of cerebral blood volume changes and cerebrovascular reactivity, were applied. Arterial blood gases were obtained during ambient air breathing. Results: Fifty three highlanders, aged 50 ± 2 years, participated in 2017 and 2012. While breathing air in 2017 vs. 2012, PaO2 was reduced, mean ± SE, 7.40 ± 0.13 vs. 7.84 ± 0.13 kPa; heart rate was increased 77 ± 1 vs. 70 ± 1 bpm (p < 0.05) but CTO remained unchanged, 67.2% ± 0.7% vs. 67.4% ± 0.7%. With oxygen, SpO2 and CTO increased similarly in 2017 and 2012, by a mean (95% CI) of 8.3% (7.5-9.1) vs. 8.5% (7.7-9.3) in SpO2, and 5.5% (4.1-7.0) vs. 4.5% (3.0-6.0) in CTO, respectively. Hyperventilation resulted in less reduction of cHb in 2017 vs. 2012, mean difference (95% CI) in change with air 2.0 U/L (0.3-3.6); with oxygen, 2.1 U/L (0.5-3.7). Conclusion: Within 5 years, CTO in highlanders was preserved despite a decreased PaO2. As this was associated with a reduced response of cerebral blood volume to hypocapnia, adaptation of cerebrovascular reactivity might have occurred.

3.
ERJ Open Res ; 9(2)2023 Mar.
Article in English | MEDLINE | ID: mdl-37057079

ABSTRACT

Background: COPD may predispose to symptomatic pulmonary hypertension at high altitude. We investigated haemodynamic changes in lowlanders with COPD ascending to 3100 m and evaluated whether preventive acetazolamide treatment would attenuate the altitude-induced increase in pulmonary artery pressure (PAP). Methods: In this randomised, placebo-controlled, double-blind, parallel-group trial, patients with COPD Global Initiative for Chronic Obstructive Lung Disease grades 2-3 who were living <800 m and had peripheral oxygen saturation (S pO2 ) >92% and arterial carbon dioxide tension <6 kPa were randomised to receive either acetazolamide (125-250 mg·day-1) or placebo capsules, starting 24 h before ascent from 760 m and during a 2-day stay at 3100 m. Echocardiography, pulse oximetry and clinical assessments were performed at 760 m and after the first night at 3100 m. Primary outcome was PAP assessed by tricuspid regurgitation pressure gradient (TRPG). Results: 112 patients (68% men, mean±sd age 59±8 years, forced expiratory volume in 1 s (FEV1) 61±12% pred, S pO2 95±2%) were included. Mean±sd TRPG increased from 22±7 to 30±10 mmHg in 54 patients allocated to placebo and from 20±5 to 24±7 mmHg in 58 patients allocated to acetazolamide (both p<0.05) resulting in a mean (95% CI) treatment effect of -5 (-9 to -1) mmHg (p=0.015). In patients assigned to placebo at 760/3100 m, mean±sd S pO2 was 95±2%/88±3%; in the acetazolamide group, the respective values were 94±2%/90±3% (both p<0.05), resulting in a treatment effect of +2 (1 to 3)% (p=0.001). Conclusions: In lowlanders with COPD travelling to 3100 m, preventive acetazolamide treatment attenuated the altitude-induced rise in PAP and improved oxygenation.

4.
J Clin Med ; 12(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36769447

ABSTRACT

Investigation of pulmonary gas exchange efficacy usually requires arterial blood gas analysis (aBGA) to determine arterial partial pressure of oxygen (mPaO2) and compute the Riley alveolar-to-arterial oxygen difference (A-aDO2); that is a demanding and invasive procedure. A noninvasive approach (AGM100), allowing the calculation of PaO2 (cPaO2) derived from pulse oximetry (SpO2), has been developed, but this has not been validated in a large cohort of chronic obstructive pulmonary disease (COPD) patients. Our aim was to conduct a validation study of the AG100 in hypoxemic moderate-to-severe COPD. Concurrent measurements of cPaO2 (AGM100) and mPaO2 (EPOC, portable aBGA device) were performed in 131 moderate-to-severe COPD patients (mean ±SD FEV1: 60 ± 10% of predicted value) and low-altitude residents, becoming hypoxemic (i.e., SpO2 < 94%) during a short stay at 3100 m (Too-Ashu, Kyrgyzstan). Agreements between cPaO2 (AGM100) and mPaO2 (EPOC) and between the O2-deficit (calculated as the difference between end-tidal pressure of O2 and cPaO2 by the AGM100) and Riley A-aDO2 were assessed. Mean bias (±SD) between cPaO2 and mPaO2 was 2.0 ± 4.6 mmHg (95% Confidence Interval (CI): 1.2 to 2.8 mmHg) with 95% limits of agreement (LoA): -7.1 to 11.1 mmHg. In multivariable analysis, larger body mass index (p = 0.046), an increase in SpO2 (p < 0.001), and an increase in PaCO2-PETCO2 difference (p < 0.001) were associated with imprecision (i.e., the discrepancy between cPaO2 and mPaO2). The positive predictive value of cPaO2 to detect severe hypoxemia (i.e., PaO2 ≤ 55 mmHg) was 0.94 (95% CI: 0.87 to 0.98) with a positive likelihood ratio of 3.77 (95% CI: 1.71 to 8.33). The mean bias between O2-deficit and A-aDO2 was 6.2 ± 5.5 mmHg (95% CI: 5.3 to 7.2 mmHg; 95%LoA: -4.5 to 17.0 mmHg). AGM100 provided an accurate estimate of PaO2 in hypoxemic patients with COPD, but the precision for individual values was modest. This device is promising for noninvasive assessment of pulmonary gas exchange efficacy in COPD patients.

5.
PLoS One ; 18(1): e0280585, 2023.
Article in English | MEDLINE | ID: mdl-36662903

ABSTRACT

OBJECTIVE: Altitude travel is increasingly popular also for middle-aged and older tourists and professionals. Due to the sensitivity of the central nervous system to hypoxia, altitude exposure may impair visuomotor performance although this has not been extensively studied. Therefore, we investigated whether a sojourn at moderately high altitude is associated with visuomotor performance impairments in healthy adults, 40y of age or older, and whether this adverse altitude-effect can be prevented by acetazolamide, a drug used to prevent acute mountain sickness. METHODS: In this randomized placebo-controlled parallel-design trial, 59 healthy lowlanders, aged 40-75y, were assigned to acetazolamide (375 mg/day, n = 34) or placebo (n = 25), administered one day before ascent and while staying at high altitude (3100m). Visuomotor performance was assessed at 760m and 3100m after arrival and in the next morning (post-sleep) by a computer-assisted test (Motor-Task-Manager). It quantified deviation of a participant-controlled cursor affected by rotation during target tracking. Primary outcome was the directional error during post-sleep recall of adaptation to rotation estimated by multilevel linear regression modeling. Additionally, adaptation, immediate recall, and correct test execution were evaluated. RESULTS: Compared to 760m, assessments at 3100m with placebo revealed a mean (95%CI) increase in directional error during adaptation and immediate recall by 1.9° (0.2 to 3.5, p = 0.024) and 1.1° (0.4 to 1.8, p = 0.002), respectively. Post-sleep recall remained unchanged (p = NS), however post-sleep correct test execution was 14% less likely (9 to 19, p<0.001). Acetazolamide improved directional error during post-sleep recall by 5.6° (2.6 to 8.6, p<0.001) and post-sleep probability of correct test execution by 36% (30 to 42, p<0.001) compared to placebo. CONCLUSION: In healthy individuals, 40y of age or older, altitude exposure impaired adaptation to and immediate recall and correct execution of a visuomotor task. Preventive acetazolamide treatment improved visuomotor performance after one night at altitude and increased the probability of correct test execution compared to placebo. CLINICALTRIALS.GOV IDENTIFIER: ClinicalTrials.gov NCT03536520.


Subject(s)
Acetazolamide , Altitude Sickness , Adult , Middle Aged , Humans , Aged , Altitude , Hypoxia/drug therapy , Sleep , Double-Blind Method
6.
Sleep ; 46(4)2023 04 12.
Article in English | MEDLINE | ID: mdl-36356042

ABSTRACT

STUDY OBJECTIVES: To assess altitude-induced sleep and nocturnal breathing disturbances in healthy lowlanders 40 y of age or older and the effects of preventive acetazolamide treatment. METHODS: Clinical examinations and polysomnography were performed at 760 m and in the first night after ascent to 3100 m in a subsample of participants of a larger trial evaluating altitude illness. Participants were randomized 1:1 to treatment with acetazolamide (375 mg/day) or placebo, starting 24 h before and while staying at 3100 m. The main outcomes were indices of sleep structure, oxygenation, and apnea/hypopnea index (AHI). RESULTS: Per protocol analysis included 86 participants (mean ± SE 53 ± 7 y old, 66% female). In 43 individuals randomized to placebo, mean nocturnal pulse oximetry (SpO2) was 94.0 ± 0.4% at 760 m and 86.7 ± 0.4% at 3100 m, with mean change (95%CI) -7.3% (-8.0 to -6.5); oxygen desaturation index (ODI) was 5.0 ± 2.3 at 760 m and 29.2 ± 2.3 at 3100 m, change 24.2/h (18.8 to 24.5); AHI was 11.3 ± 2.4/h at 760 m and 23.5 ± 2.4/h at 3100 m, change 12.2/h (7.3 to 17.0). In 43 individuals randomized to acetazolamide, altitude-induced changes were mitigated. Mean differences (Δ, 95%CI) in altitude-induced changes were: ΔSpO2 2.3% (1.3 to 3.4), ΔODI -15.0/h (-22.6 to -7.4), ΔAHI -11.4/h (-18.3 to -4.6). Total sleep time, sleep efficiency, and N3-sleep fraction decreased with an ascent to 3100 m under placebo by 40 min (17 to 60), 5% (2 to 8), and 6% (2 to 11), respectively. Acetazolamide did not significantly change these outcomes. CONCLUSIONS: During a night at 3100 m, healthy lowlanders aged 40 y or older revealed hypoxemia, sleep apnea, and disturbed sleep. Preventive acetazolamide treatment improved oxygenation and nocturnal breathing but had no effect on sleep duration and structure. TRIAL REGISTRATION: The trial is registered at Clinical Trials, https://clinicaltrials.gov, NCT03561675.


Subject(s)
Acetazolamide , Altitude , Humans , Female , Male , Acetazolamide/therapeutic use , Sleep , Respiration
7.
Front Physiol ; 14: 1274111, 2023.
Article in English | MEDLINE | ID: mdl-38250659

ABSTRACT

Background: Hypoxia and old age impair postural control and may therefore enhance the risk of accidents. We investigated whether acetazolamide, the recommended drug for prevention of acute mountain sickness, may prevent altitude-induced deterioration of postural control in older persons. Methods: In this parallel-design trial, 95 healthy volunteers, 40 years of age or older, living <1,000 m, were randomized to preventive therapy with acetazolamide (375 mg/d) or placebo starting 24 h before and during a 2-day sojourn at 3,100 m. Instability of postural control was quantified by a balance platform with the center of pressure path length (COPL) as primary outcome while pulse oximetry (SpO2) was monitored. Effects of altitude and treatment on COPL were evaluated by ordered logistic regression. www.ClinicalTrials.gov NCT03536429. Results: In participants taking placebo, ascent from 760 m to 3,100 m increased median COPL from 25.8 cm to 27.6 cm (odds ratio 3.80, 95%CI 2.53-5.70) and decreased SpO2 from 96% to 91% (odds ratio 0.0003, 95%CI 0.0002-0.0007); in participants taking acetazolamide, altitude ascent increased COPL from 24.6 cm to 27.3 cm (odds ratio 2.22, 95%CI 1.57-3.13), while SpO2 decreased from 96% to 93% (odds ratio 0.007, 95%CI 0.004-0.012). Altitude-induced increases in COPL were smaller with acetazolamide vs. placebo (odds ratio 0.58, 95%CI 0.34-0.99) while drops in SpO2 were mitigated (odds ratio 19.2, 95%CI 9.9-37.6). Conclusion: In healthy individuals, 40 years of age or older, postural control was impaired after spending a night at 3,100 m. The altitude-induced deterioration of postural control was mitigated by acetazolamide, most likely due to the associated improvement in oxygenation.

8.
NPJ Prim Care Respir Med ; 32(1): 20, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637220

ABSTRACT

Inhaled medication is essential to control asthma and COPD, but availability and proper adherence are challenges in low-middle income countries (LMIC). Data on medication availability and adherence in Central Asia are lacking. We aimed to investigate the availability of respiratory medication and the extent of financially driven non-adherence in patients with COPD and asthma in Kyrgyzstan. A cross-sectional study was conducted in two regions of Kyrgyzstan. Patients with a physician- and spirometry confirmed diagnosis of asthma and/or COPD were included. The main outcomes were (1) availability of respiratory medication in hospitals and pharmacies, assessed by a survey, and (2) medication adherence, assessed by the Test of Adherence to Inhalers (TAI). Logistic regression analyses were used to identify predictors for adherence. Of the 300 participants (COPD: 264; asthma: 36), 68.9% were buying respiratory medication out-of-pocket. Of all patients visiting the hospital, almost half reported medication not being available. In pharmacies, this was 8%. Poor adherence prevailed over intermediate and good adherence (80.7% vs. 12.0% and 7.3%, respectively). Deliberate and erratic non-adherence behavior patterns were the most frequent (89.7% and 88.0%), followed by an unconscious non-adherent behavioral pattern (31.3%). In total, 68.3% reported a financial reason as a barrier to proper adherence. Low BMI was the only factor significantly associated with good adherence. In this LMIC population, poor medication availability was common and 80% were poorly adherent. Erratic and deliberate non-adherent behaviors were the most common pattern and financial barriers play a role in over two-thirds of the population.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Asthma/drug therapy , Cross-Sectional Studies , Humans , Medication Adherence , Nebulizers and Vaporizers , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/epidemiology
9.
BMJ Open ; 12(2): e053085, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121602

ABSTRACT

OBJECTIVE: After experiencing tuberculosis (TB), many people develop post-tuberculosis lung disease (PTBLD). Pulmonary rehabilitation (PR) centrally comprising of education and exercise is recommended internationally for people living with chronic respiratory diseases. However, no such service exists in Kyrgyzstan. This study investigated the opinions of healthcare professionals who would be expected to be potential future referrers to PR and adults living with PTBLD about what a PR programme could look like in Kyrgyzstan. DESIGN: A qualitative study using interviews and focus groups. Grounded theory and thematic analysis were used for data collection and analysis. PARTICIPANTS: 63 participants; 15 referrers (12 male, 3 female; 12 pulmonolgists, 3 TB specialists) and 48 adults (26 male, 22 female) living with PTBLD. SETTING: Participants were recruited from hospital settings in Bishkek and Chuy Region, Kygryzstan. METHODS: Fifteen semistructured interviews were conducted with referrers and nine focus group discussions were conducted with adults living with PTBLD. RESULTS: Five key themes were developed: (1) living with PTBLD; (2) attitude to PR, which emphasised the perceived importance and potential benefits of implemention; (3) barriers/facilitators to PR, which included time and cost, and the importance of appropriate communication in enabling participation; (4) interventional components of PR, which described culturally and demographically appropriate physical activities including rhythmic movements, dance and volleyball; and (5) psychosocial support, which demonstrated the importance of psychological support for patients coping with the effects of stigma. CONCLUSIONS: Potential referrers and adults living with PTBLD expressed their support for the implementation of PR. The culture-specific and population-specific issues highlighted in this work demonstrate the need to address stigma and provide certain types of exercise training/education modules for this specific clinical population. In other respects the currently known attitudes/barriers to PR, identified in Western research, appear to apply. The principles of culturally adapting PR may be helpful for those looking to establish similar clinical services in other low-income and middle-income countries and in Central Asia in particular. TRIAL REGISTRATION NUMBER: ISRCTN11122503.


Subject(s)
Lung Diseases , Tuberculosis , Adult , Exercise , Female , Humans , Kyrgyzstan , Male , Qualitative Research
10.
BMJ Open ; 12(2): e048664, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35190411

ABSTRACT

INTRODUCTION: Pulmonary rehabilitation (PR) is a programme of individually prescribed physical exercise, education and self-management activities. PR is recommended in international guidelines for managing chronic obstructive pulmonary disease (COPD) and other chronic respiratory diseases. PR is still under-recognised in tuberculosis (TB) guidelines and PR is not available in many low and middle-income countries and for people with post-TB lung disease (PTBLD). The main aims of the study are to adapt and define a culturally appropriate PR programme in Kyrgyzstan for people living with PTBLD and to test, in a fully powered randomised controlled trial (RCT), the effectiveness of PR in improving exercise capacity for people living with PTBLD. METHODS AND ANALYSIS: The study will be divided into three stages: stage 1: focus group discussions with patients living with PTBLD and interviews with PR referrers will be conducted to explore initial perceptions and inform the cultural adaptation, structure and content of PR. Stage 2a: a single-blind RCT evaluating the effectiveness of a culturally adapted 6-week PR programme on maximal exercise capacity, assessed by the incremental shuttle walking test, before and after PR. Participants will be additionally followed-up 12 weeks postbaseline. Additional outcomes will include health-related quality of life, respiratory symptoms, psychological well-being and physical function. Stage 2b: participants' experience of PR will be collected through interviews and using a log book and a patient evaluation form. Staff delivering PR will be interviewed to explore their experience of delivering the intervention and refining the delivery for future implementation. ETHICS AND DISSEMINATION: The study was approved 22/07/2019 by Ethics Committee National Center for Cardiology and Internal Medicine (reference number 17) and by University of Leicester ethics committee (reference number 22293). Study results will be disseminated through appropriate peer-reviewed journals, national and international respiratory/physiotherapy conferences, social media, and through patient and public involvement events in Kyrgyzstan and in the UK. TRIAL REGISTRATION NUMBER: ISRCTN11122503.


Subject(s)
Lung Diseases , Pulmonary Disease, Chronic Obstructive , Tuberculosis , Adult , Humans , Kyrgyzstan , Outcome Assessment, Health Care , Pulmonary Disease, Chronic Obstructive/rehabilitation , Quality of Life , Randomized Controlled Trials as Topic
11.
Lancet Glob Health ; 10(1): e63-e76, 2022 01.
Article in English | MEDLINE | ID: mdl-34919858

ABSTRACT

BACKGROUND: Effectiveness of health programmes can be undermined when the implementation misaligns with local beliefs and behaviours. To design context-driven implementation strategies, we explored beliefs and behaviours regarding chronic respiratory disease (CRD) in diverse low-resource settings. METHODS: This observational mixed-method study was conducted in Africa (Uganda), Asia (Kyrgyzstan and Vietnam) and Europe (rural Greece and a Roma camp). We systematically mapped beliefs and behaviours using the SETTING-tool. Multiple qualitative methods among purposively selected community members, health-care professionals, and key informants were triangulated with a quantitative survey among a representative group of community members and health-care professionals. We used thematic analysis and descriptive statistics. FINDINGS: We included qualitative data from 340 informants (77 interviews, 45 focus group discussions, 83 observations of community members' households and health-care professionals' consultations) and quantitative data from 1037 community members and 204 health-care professionals. We identified three key themes across the settings; namely, (1) perceived CRD identity (community members in all settings except the rural Greek strongly attributed long-lasting respiratory symptoms to infection, predominantly tuberculosis); (2) beliefs about causes (682 [65·8%] of 1037 community members strongly agreed that tobacco smoking causes symptoms, this number was 198 [19·1%] for household air pollution; typical perceived causes ranged from witchcraft [Uganda] to a hot-cold disbalance [Vietnam]); and (3) norms and social structures (eg, real men smoke [Kyrgyzstan and Vietnam]). INTERPRETATION: When designing context-driven implementation strategies for CRD-related interventions across these global settings, three consistent themes should be addressed, each with common and context-specific beliefs and behaviours. Context-driven strategies can reduce the risk of implementation failure, thereby optimising resource use to benefit health outcomes. FUNDING: European Commission Horizon 2020. TRANSLATIONS: For the Greek, Russian and Vietnamese translations of the abstract see Supplementary Materials section.


Subject(s)
Developing Countries , Health Knowledge, Attitudes, Practice , Respiration Disorders/epidemiology , Respiration Disorders/psychology , Adult , Aged , Attitude of Health Personnel , Chronic Disease , Female , Humans , Male , Middle Aged , Respiration Disorders/ethnology
12.
NEJM Evid ; 1(1): EVIDoa2100006, 2022 01.
Article in English | MEDLINE | ID: mdl-38296630

ABSTRACT

BACKGROUND: We evaluated the efficacy of acetazolamide in preventing adverse altitude effects in patients with moderate to severe chronic obstructive pulmonary disease (COPD) and in healthy lowlanders 40 years of age or older. METHODS: Trial 1 was a randomized, double-blind, parallel-design trial in which 176 patients with COPD were treated with acetazolamide capsules (375 mg/day) or placebo, starting 24 hours before staying for 2 days at 3100 m. The mean (±SD) age of participants was 57±9 years, and 34% were women. At 760 m, COPD patients had oxygen saturation measured by pulse oximetry of 92% or greater, arterial partial pressure of carbon dioxide less than 45 mm Hg, and mean forced expiratory volume in 1 second of 63±11% of predicted. The primary outcome in trial 1 was the incidence of the composite end point of altitude-related adverse health effects (ARAHE) at 3100 m. Criteria for ARAHE included acute mountain sickness (AMS) and symptoms or findings relevant to well-being and safety, such as severe hypoxemia, requiring intervention. Trial 2 comprised 345 healthy lowlanders. Their mean age was 53±7 years, and 69% were women. The participants in trial 2 underwent the same protocol as did the patients with COPD in trial 1. The primary outcome in trial 2 was the incidence of AMS assessed at 3100 m by the Lake Louise questionnaire score (the scale of self-assessed symptoms ranges from 0 to 15 points, indicating absent to severe, with 3 or more points including headache, indicating AMS). RESULTS: In trial 1 of patients with COPD, 68 of 90 (76%) receiving placebo and 42 of 86 (49%) receiving acetazolamide experienced ARAHE (hazard ratio, 0.54; 95% confidence interval [CI], 0.37 to 0.79; P<0.001). The number needed to treat (NNT) to prevent one case of ARAHE was 4 (95% CI, 3 to 8). In trial 2 of healthy individuals, 54 of 170 (32%) receiving placebo and 38 of 175 (22%) receiving acetazolamide experienced AMS (hazard ratio, 0.48; 95% CI, 0.29 to 0.80; chi-square statistic P=0.035). The NNT to prevent one case of AMS was 10 (95% CI, 5 to 141). No serious adverse events occurred in these trials. CONCLUSIONS: Preventive treatment with acetazolamide reduced the incidence of adverse altitude effects requiring an intervention in patients with COPD and the incidence of AMS in healthy lowlanders 40 years of age or older during a high-altitude sojourn. (Funded by the Swiss National Science Foundation [Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung], Lunge Zürich, and the Swiss Lung Foundation; ClinicalTrials.gov numbers, NCT03156231 and NCT03561675.)


Subject(s)
Acetazolamide , Altitude Sickness , Altitude , Carbonic Anhydrase Inhibitors , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Acetazolamide/therapeutic use , Altitude Sickness/prevention & control , Altitude Sickness/drug therapy , Carbonic Anhydrase Inhibitors/therapeutic use , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/adverse effects , Hypoxia , Pulmonary Disease, Chronic Obstructive/drug therapy
14.
High Alt Med Biol ; 22(4): 386-394, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34432548

ABSTRACT

Forrer, Aglaia, Philipp M. Scheiwiller, Maamed Mademilov, Mona Lichtblau, Ulan Sheraliev, Nuriddin H. Marazhapov, Stéphanie Saxer, Patrick Bader, Paula Appenzeller, Shoira Aydaralieva, Aybermet Muratbekova, Talant M. Sooronbaev, Silvia Ulrich, Konrad E. Bloch, and Michael Furian. Exercise performance in central Asian highlanders: A cross-sectional study. High Alt Med Biol. 22:386-394, 2021. Introduction: Life-long exposure to hypobaric hypoxia induces physiologic adaptations in highlanders that may modify exercise performance; however, reference data for altitude populations are scant. Methods: Life-long residents of the Tien Shan mountain range, 2,500 - 3,500 m, Kyrgyzstan, free of cardiopulmonary disease, underwent cardiopulmonary cycle exercise tests with a progressive ramp protocol to exhaustion at 3,250 m. ECG, breath-by-breath pulmonary gas exchange, and oxygen saturation by pulse oximetry (SpO2) were measured. Results: Among 81 highlanders, age (mean ± SD) 48 ± 10 years, 46% women, SpO2 at rest was 88% ± 2%, peak oxygen uptake (V'O2peak) was 21.6 ± 5.9 mL/kg/min (76% ± 15% predicted for a low-altitude reference population); peak work rate (Wpeak) was 117 ± 37 W (77% ± 17% predicted), SpO2 at peak was 84% ± 5%, heart rate reserve (220 - age - maximal heart rate) was 28 ± 17/min, ventilatory reserve (maximal voluntary ventilation - maximal minute ventilation) was 68 ± 32 l/min, and respiratory exchange ratio was 1.03 ± 0.09. Peak BORG-CR10 dyspnea and leg fatigue scores were 5.1 ± 2.0 and 6.3 ± 2.1. In multivariable linear regression analyses, age and sex were robust determinants of Wpeak, V'O2peak, and metabolic equivalent (MET) at peak, whereas body mass index, resting systolic blood pressure, and mean pulmonary artery pressure were not. Conclusions: The current study shows that V'O2peak and Wpeak of highlanders studied at 3,250 m, near their altitude of residence, were reduced by about one quarter compared with mean predicted values for lowlanders. The provided prediction models for V'O2peak, Wpeak, and METs in central Asian highlanders might be valuable for comparisons with other high altitude populations.


Subject(s)
Altitude , Exercise Test , Oxygen Consumption , Adult , Asian People , Blood Pressure , Cross-Sectional Studies , Female , Humans , Hypoxia , Male , Middle Aged , Oxygen Saturation
15.
ERJ Open Res ; 7(2)2021 Apr.
Article in English | MEDLINE | ID: mdl-33834057

ABSTRACT

The aim of the study was to investigate the pulmonary haemodynamic response to exercise in Central Asian high- and lowlanders. This was a cross-sectional study in Central Asian highlanders (living >2500 m) compared with lowlanders (living <800 m), assessing cardiac function, including tricuspid regurgitation pressure gradient (TRPG), cardiac index and tricuspid annular plane systolic excursion (TAPSE) by echocardiography combined with heart rate and oxygen saturation measured by pulse oximetry (S pO2 ) during submaximal stepwise cycle exercise (10 W increase per 3 min) at their altitude of residence (at 760 m or 3250 m, respectively). 52 highlanders (26 females; aged 47.9±10.7 years; body mass index (BMI) 26.7±4.6 kg·m-2; heart rate 75±11 beats·min-1; S pO2 91±5%;) and 22 lowlanders (eight females; age 42.3±8.0 years; BMI 26.9±4.1 kg·m-2; heart rate 68±7 beats·min-1; S pO2 96±1%) were studied. Highlanders had a lower resting S pO2 compared to lowlanders but change during exercise was similar between groups (highlanders versus lowlanders -1.4±2.9% versus -0.4±1.1%, respectively, p=0.133). Highlanders had a significantly elevated TRPG and exercise-induced increase was significantly higher (13.6±10.5 mmHg versus 6.1±4.8 mmHg, difference 7.5 (2.8 to 12.2) mmHg; p=0.002), whereas cardiac index increase was slightly lower in highlanders (2.02±0.89 L·min-1 versus 1.78±0.61 L·min-1, difference 0.24 (-0.13 to 0.61) L·min-1; p=0.206) resulting in a significantly steeper pressure-flow ratio (ΔTRPG/Δcardiac index) in highlanders 9.4±11.4 WU and lowlanders 3.0±2.4 WU (difference 6.4 (1.4 to 11.3) WU; p=0.012). Right ventricular-arterial coupling (TAPSE/TRPG) was significantly lower in highlanders but no significant difference in change with exercise in between groups was detected (-0.01 (-0.20 to 0.18); p=0.901). In highlanders, chronic exposure to hypoxia leads to higher pulmonary artery pressure and a steeper pressure-flow relation during exercise.

16.
Int J Cardiol ; 324: 173-179, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32987054

ABSTRACT

BACKGROUND: The incidence and magnitude of cardiac ischemia and arrhythmias in patients with chronic obstructive pulmonary disease (COPD) during exposure to hypobaric hypoxia is insufficiently studied. We investigated electrocardiogram (ECG) markers of ischemia at rest and during incremental exercise testing (IET) in COPD-patients travelling to 3100 m. STUDY DESIGN AND METHODS: Lowlanders (residence <800 m) with COPD (forced volume in the first second of expiration (FEV1) 40-80% predicted, oxygen saturation (SpO2) ≥92%, arterial partial pressure of carbon dioxide (PaCO2) <6 kPa at 760 m) aged 18 to 75 years, without history of cardiovascular disease underwent 12­lead ECG recordings at rest and during cycle IET to exhaustion at 760 m and after acute exposure of 3 h to 3100 m. Mean ST-changes in ECGs averaged over 10s were analyzed for signs of ischemia (≥1 mm horizontal or downsloping ST-segment depression) at rest, peak exercise and 2-min recovery. RESULTS: 80 COPD-patients (51% women, mean ± SD, 56.2 ± 9.6 years, body mass index (BMI) 27.0 ± 4.5 kg/m2, SpO2 94 ± 2%, FEV1 63 ± 10% prEd.) were included. At 3100 m, 2 of 53 (3.8%) patients revealed ≥1 mm horizontal ST-depression during IET vs 0 of 64 at 760 m (p = 0.203). Multivariable mixed regression revealed minor but significant ST-depressions associated with altitude, peak exercise or recovery and rate pressure product (RPP) in multiple leads. CONCLUSION: In this study, ECG recordings at rest and during IET in COPD-patients do not suggest an increased incidence of signs of ischemia with ascent to 3100 m. Whether statistically significant ST changes below the standard threshold of clinical relevance detected in multiple leads reflect a risk of ischemia during prolonged exposure remains to be elucidated.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Adolescent , Adult , Aged , Altitude , Electrocardiography , Exercise , Exercise Test , Female , Humans , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Young Adult
18.
NPJ Prim Care Respir Med ; 30(1): 42, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024125

ABSTRACT

Most patients with chronic respiratory disease live in low-resource settings, where evidence is scarcest. In Kyrgyzstan and Vietnam, we studied the implementation of a Ugandan programme empowering communities to take action against biomass and tobacco smoke. Together with local stakeholders, we co-created a train-the-trainer implementation design and integrated the programme into existing local health infrastructures. Feasibility and acceptability, evaluated by the modified Conceptual Framework for Implementation Fidelity, were high: we reached ~15,000 Kyrgyz and ~10,000 Vietnamese citizens within budget (~€11,000/country). The right engaged stakeholders, high compatibility with local contexts and flexibility facilitated programme success. Scores on lung health awareness questionnaires increased significantly to an excellent level among all target groups. Behaviour change was moderately successful in Vietnam and highly successful in Kyrgyzstan. We conclude that contextualising the awareness programme to diverse low-resource settings can be feasible, acceptable and effective, and increase its sustainability. This paper provides guidance to translate lung health interventions to new contexts globally.


Subject(s)
Air Pollution, Indoor/prevention & control , Tobacco Smoke Pollution/prevention & control , Air Pollution, Indoor/adverse effects , Awareness , Feasibility Studies , Health Education/methods , Health Knowledge, Attitudes, Practice , Humans , Kyrgyzstan , Program Development , Program Evaluation , Respiratory Tract Diseases/etiology , Respiratory Tract Diseases/prevention & control , Tobacco Smoke Pollution/adverse effects , Vietnam
19.
Eur Respir J ; 56(2)2020 08.
Article in English | MEDLINE | ID: mdl-32430419

ABSTRACT

THE QUESTION ADDRESSED BY THE STUDY: Chronic exposure to hypoxia increases pulmonary artery pressure (PAP) in highlanders, but the criteria for diagnosis of high-altitude pulmonary hypertension (HAPH) are debated. We assessed cardiac function and PAP in highlanders at 3250 m and explored HAPH prevalence using different definitions. PATIENTS AND METHODS: Central Asian highlanders free of overt cardiorespiratory disease, permanently living at 2500-3500 m compared to age-matched lowlanders living <800 m. Participants underwent echocardiography close to their altitude of residence (at 3250 m versus 760 m). RESULTS: 173 participants (97 highlanders, 76 lowlanders), mean±sd age 49±9 years (49% females) completed the study. Results in lowlanders versus highlanders were systolic PAP (23±5 versus 30±10 mmHg), right ventricular fractional area change (42±6% versus 39±8%), tricuspid annular plane systolic excursion (2.1±0.3 versus 2.0±0.3 cm), right atrial volume index (20±6 versus 23±8 mL·m-2), left ventricular ejection fraction (62±4% versus 57±5%) and stroke volume (64±10 versus 57±11 mL); all between-group comparisons p<0.05. Depending on criteria, HAPH prevalence varied between 6% and 35%. THE ANSWER TO THE QUESTION: Chronic exposure to hypoxia in highlanders is associated with higher PAP and slight alterations in right and left heart function compared to lowlanders. The prevalence of HAPH in this large highlander cohort varies between 6% according to expert consensus definition of chronic high-altitude disease to 35% according to the most recent definition of pulmonary hypertension proposed for lowlanders.


Subject(s)
Altitude Sickness , Hypertension, Pulmonary , Adult , Altitude , Female , Humans , Hypertension, Pulmonary/epidemiology , Male , Middle Aged , Stroke Volume , Ventricular Function, Left
20.
Front Physiol ; 11: 600551, 2020.
Article in English | MEDLINE | ID: mdl-33488397

ABSTRACT

BACKGROUND: Novel, portable blood gas analyzers (BGAs) may serve as essential point-of-care tools in remote regions, during air travel or in ambulance services but they have not been extensively validated. RESEARCH QUESTION: We compared accuracy of a portable BGA to a validated stationary device. METHODS: In healthy individuals and patients with chronic obstructive pulmonary disease participating in clinical field studies at different altitudes, arterial blood samples were obtained at rest and during exercise in a hospital at 760 m and in a high altitude clinic at 3100 m. Paired measurements by a portable BGA (EPOC, Siemens Healthcare) and a stationary BGA (Rapidpoint500, Siemens Healthcare) were performed to compute bias (mean difference) and limits of agreement (95% CI of bias). RESULTS: Of 105 individuals, 248 arterial blood samples were analyzed, 108 at 760 m, 140 at 3100 m. Ranges of values measured by portable BGA were: pH 7.241-7.473, PaCO2 21.5-52.5 mmHg, and PaO2 45.5-107.1 mmHg. Bias (95% CI) between devices were: pH 0.007 (-0.029 to 0.044), PaCO2 -0.3 mmHg (-4.8 to 4.2), and PaO2 -0.2 mmHg (-9.1 to 4.7). For pH, agreement between devices was improved by the equation to correct pH by portable BGA = -1.37 + pH measured × 1.19; bias after correction -0.007 (-0.023 to 0.009). The portable BGA was easily handled and worked reliably. INTERPRETATION: Accuracy of blood gas analysis by the portable BGA in comparison to the reference BGA was adequate for clinical use. Because of portability and ease of handling, portable BGA are valuable diagnostic tools for use in everyday practice as well as under challenging field conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...