Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 19(3): 71-78, 2018 May.
Article in English | MEDLINE | ID: mdl-29536664

ABSTRACT

Voluntary inspiration breath hold (VIBH) for left breast cancer patients has been shown to be a safe and effective method of reducing radiation dose to the heart. Currently, VIBH protocol compliance is monitored visually. In this work, we establish whether it is possible to gate the delivery of radiation from an Elekta linac using the Microsoft Kinect version 2 (Kinect v2) depth sensor to measure a patient breathing signal. This would allow contactless monitoring during VMAT treatment, as an alternative to equipment-assisted methods such as active breathing control (ABC). Breathing traces were acquired from six left breast radiotherapy patients during VIBH. We developed a gating interface to an Elekta linac, using the depth signal from a Kinect v2 to control radiation delivery to a programmable motion platform following patient breathing patterns. Radiation dose to a moving phantom with gating was verified using point dose measurements and a Delta4 verification phantom. 60 breathing traces were obtained with an acquisition success rate of 100%. Point dose measurements for gated deliveries to a moving phantom agreed to within 0.5% of ungated delivery to a static phantom using both a conventional and VMAT treatment plan. Dose measurements with the verification phantom showed that there was a median dose difference of better than 0.5% and a mean (3% 3 mm) gamma index of 92.6% for gated deliveries when using static phantom data as a reference. It is possible to use a Kinect v2 device to monitor voluntary breath hold protocol compliance in a cohort of left breast radiotherapy patients. Furthermore, it is possible to use the signal from a Kinect v2 to gate an Elekta linac to deliver radiation only during the peak inhale VIBH phase.


Subject(s)
Breast Neoplasms/radiotherapy , Breath Holding , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Respiratory-Gated Imaging Techniques/methods , Tomography, X-Ray Computed/methods , Female , Humans , Image Processing, Computer-Assisted/methods , Motion , Particle Accelerators/instrumentation , Prognosis , Proof of Concept Study , Radiotherapy Dosage , Respiration , Respiratory-Gated Imaging Techniques/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...