Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Gene ; 789: 145670, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33892070

ABSTRACT

We have functionally characterized the RPL6, a Ribosomal Protein Large subunit gene for salt stress tolerance in rice. The overexpression of RPL6 resulted in tolerance to moderate (150 mM) to high (200 mM) levels of salt (NaCl). The transgenic rice plants expressing RPL6 constitutively showed better phenotypic and physiological responses with high quantum efficiency, accumulation of higher chlorophyll and proline contents, and an overall increase in seed yield compared with the wild type in salt stress treatments. An iTRAQ-based comparative proteomic analysis revealed the high expression of about 333 proteins among the 4378 DAPs in a selected overexpression line of RPL6 treated with 200 mM of NaCl. The functional analysis showed that these highly accumulated proteins (HAPs) are involved in photosynthesis, ribosome and chloroplast biogenesis, ion transportation, transcription and translation regulation, phytohormone and secondary metabolite signal transduction. An in silico network analysis of HAPs predicted that RPL6 binds with translation-related proteins and helicases, which coordinately affect the activities of a comprehensive signaling network, thereby inducing tolerance and promoting growth and productivity in response to salt stress. Our overall findings identified a novel candidate, RPL6, whose characterization contributed to the existing knowledge on the complexity of salt tolerance mechanism in plants.


Subject(s)
Oryza/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Ribosomal Proteins/genetics , Salt Tolerance/genetics , Chlorophyll/genetics , Chloroplasts/genetics , Gene Expression Regulation, Plant/genetics , Photosynthesis/genetics , Proteomics/methods , Salt Stress/genetics , Seedlings/genetics , Signal Transduction/genetics
2.
Sci Rep ; 10(1): 21143, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273616

ABSTRACT

Improved-Samba-Mahsuri (ISM), a high-yielding, popular bacterial blight resistant (possessing Xa21, xa13, and xa5), fine-grain type, low glycemic index rice variety is highly sensitive to low soil phosphorus (P). We have deployed marker-assisted backcross breeding (MABB) approach for targeted transfer of Pup1, a major QTL associated with low soil P tolerance, using Swarna as a donor. A new co-dominant marker, K20-1-1, which is specific for Pup1 was designed and used for foreground selection along with functional markers specific for the bacterial blight resistance genes, Xa21, xa13, and xa5. A set of 66 polymorphic SSR marker were used for the background selection along with a pair of flanking markers for the recombination selection in backcross derived progenies and in BC2F2 generation, 12 plants, which are homozygous for Pup1, all the three bacterial blight resistance genes and possessing agro-morphological traits equivalent to or better than ISM were selected and selfed to produce BC2F3s. They were evaluated in plots with low soil P and normal soil P at ICAR-IIRR, Hyderabad for their low soil P tolerance, and bacterial blight resistance and superior lines were advanced to BC2F6. One of the lines, when tested at multiple locations in India was found promising under both normal as well as low soil P conditions.


Subject(s)
Adaptation, Physiological , Bacteria/pathogenicity , Crops, Agricultural/physiology , Genetic Markers/genetics , Oryza/physiology , Phosphorus/pharmacology , Soil/chemistry , Crops, Agricultural/genetics , Crops, Agricultural/microbiology , Genes, Plant , India , Oryza/genetics , Oryza/microbiology , Quantitative Trait Loci
3.
Rice (N Y) ; 13(1): 17, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32166467

ABSTRACT

BACKGROUND: Field resistance is often effective and durable as compared to vertical resistance. The introgression line (INGR15002) derived from O. glumaepatula has proven broad spectrum field resistance for both leaf and neck blast. RESULTS: Quantitative Trait Loci (QTL) analysis of INGR15002, led to the identification of two major QTL - qBL3 contributing about 34% and 32% phenotypic variance towards leaf and neck blast resistance, respectively and qBL7 contributing about 25% of phenotypic variance for leaf blast. Further, qBL3 was fine mapped, narrowed down to 300 kb region and a linked SNP maker was identified. By combining mapping with microarray analysis, a candidate gene, Os03g0281466 (malectin-serine threonine kinase), was identified in the fine mapped region and named as Pi68(t). The nucleotide variations in the coding as well as upstream region of the gene was identified through cloning and sequence analysis of Pi68(t) alleles. These significant variations led to the non-synonymous changes in the protein as well as variations (presence/absence) in four important motifs (W-box element; MYC element; TCP element; BIHD1OS) at promoter region those are associated with resistance and susceptible reactions. The effect of qBL3 was validated by its introgression into BPT5204 (susceptible variety) through marker-assisted selection and progeny exhibiting resistance to both leaf and neck blast was identified. Further, the utility of linked markers of Pi68(t) in the blast breeding programs was demonstrated in elite germplasm lines. CONCLUSIONS: This is the first report on the identification and characterization of major effect QTL from O. glumaepatula, which led to the identification of a putative candidate gene, Pi68(t), which confers field resistance to leaf as well as neck blast in rice.

4.
3 Biotech ; 9(7): 278, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31245242

ABSTRACT

Interaction between gene products encoded by the cytoplasm and nucleus form the core of wild abortive cytoplasmic male sterile (WA-CMS) system of hybrid breeding in rice. Gaining insights into such interactions can be helpful in the development of better three-line rice hybrids and also identify novel male sterility systems. In the present study, the whole transcriptome profiles of immature florets of IR58025A, a WA-CMS line and its isonuclear maintainer line, IR58025B, collected at pre-anthesis stage were compared to delineate the pathways involved in pollen abortion and male sterility. Among the 774 differentially expressed transcripts (DETs), 496 were down regulated and 278 were up regulated in IR58025A compared to IR58025B. The genes associated with oxidative stress response, defense response, etc. were significantly up-regulated, while those associated with respiration, cell wall modifications, pectinesterase activity, etc. were significantly down-regulated in the WA-CMS line. Gene ontology and pathway enrichment analyses revealed the down-regulation of both nuclear and organellar genes involved in key metabolic processes of cell respiration, photosynthesis and other energy yielding metabolites in IR58025A, relative to IR58025B, indicating a general shift toward conservation of energy and other key resources in the florets of WA-CMS line. The data derived from RNA-Seq analysis were validated through qRT-PCR analysis. Based on the results obtained, it can be hypothesized that pollen abortion principally occurs due to up-regulation of pathways leading to oxidative stress leading to energy starvation conditions in consonance with reduced expression of genes associated with the cell wall formation, respiration, and other key metabolic processes.

5.
Physiol Mol Biol Plants ; 25(1): 197-205, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30804642

ABSTRACT

With the changing climate and rainfall abrasions, there is a gradual shift in the system of rice cultivation from traditional transplanted anaerobic to aerobic system. Studies on the root anatomical and morpho-physiological traits provide insights about the adaptation under aerobic conditions. We investigated the root anatomical and morpho-physiological traits in anaerobic (BPT 5204) and aerobic (CR Dhan 202) adapted rice genotypes grown under anaerobic and aerobic conditions. It was observed that the formation of fewer aerenchyma, thickened root and larger xylem area were critical anatomical traits associated with aerobic adaptation as compared to anaerobic conditions. The root length of CR Dhan 202 significantly increased under aerobic condition which may be attributed to its aerobic adaptation in terms of water acquisition. The photosynthetic rate was significantly higher in CR Dhan 202 as compared to that of BPT 5204 under the aerobic condition. The morpho-physiological results showed that the root length, total dry weight and photosynthetic rate are the key parameters for imparting aerobic adaptation. These root anatomical and morpho-physiological traits associated with the adaptation can be used as screening criteria for phenotyping and selection of genotypes suitable for aerobic system of cultivation. Such study is expected to expedite the development of rice aerobic varieties in aerobic breeding programmes.

6.
Plant Biol (Stuttg) ; 21(2): 190-205, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30411830

ABSTRACT

The target of rapamycin (TOR) protein regulates growth and development in photosynthetic and non-photosynthetic eukaryotes. Although the TOR regulatory networks are involved in nutrient and energy signalling, and transcriptional and translational control of multiple signalling pathways, the molecular mechanism of TOR regulation of plant abiotic stress responses is still unclear. The TOR-mediated transcriptional regulation of genes encoding ribosomal proteins (RP) is a necessity under stress conditions for balanced growth and productivity in plants. The activation of SnRKs (sucrose non-fermenting-related kinases) and the inactivation of TOR signalling in abiotic stresses is in line with the accumulation of ABA and transcriptional activation of stress responsive genes. Autophagy is induced under abiotic stress conditions, which results in degradation of proteins and the release of amino acids, which might possibly induce phosphorylation of TOR and, hence, its activation. TOR signalling also has a role in regulating ABA biosynthesis for transcriptional regulation of stress-related genes. The switch between activation and inactivation of TOR by its phosphorylation and de-phosphorylation maintains balanced growth in response to stresses. In the present review, we discuss the important signalling pathways that are regulated by TOR and try to assess the relationship between TOR signalling and tolerance to abiotic stresses in plants. The review also discusses possible cross-talk between TOR and RP genes in response to abiotic stresses.


Subject(s)
Crop Production , Plant Physiological Phenomena , Signal Transduction/physiology , TOR Serine-Threonine Kinases/physiology , Plant Development , Plant Growth Regulators/metabolism , Plant Growth Regulators/physiology , Plants/metabolism
7.
3 Biotech ; 8(9): 383, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30148033

ABSTRACT

A set of reference genes expressing stably under aerobic and anaerobic conditions in rice is essential to execute omics studies relating to aerobic adaptations. Stability of expression of ten rice reference genes, viz. Actin, eEF-1a, eIF-5C, Exp1, Exp2, Memp, SKP1A, TF-SUI1, TPH, and UBQ5 was validated across six experimental sets in shoot and root tissues at seedling, tillering, and panicle initiation stages. Comprehensively, Memp (Membrane protein), TPH (Tumor protein homolog), and Exp1 (Expressed protein) were revealed as the most stable set with acceptable M and V value according to the gold standards of qRT-PCR using various algorithms/tools. The identified set of reference genes was validated using root trait genes, which showed concurrence with the functional expression patterns in the aerobic and anaerobic adapted cultivars. The Memp (Membrane protein), TPH (Tumor protein homolog), and Exp1 (Expressed protein) genes are the most stable reference genes across the root and shoot at various developmental stages under aerobic and anaerobic conditions in rice. This is the first study for accurate and reliable relative gene expression analysis in rice grown in aerobic and anaerobic conditions.

8.
Brief Funct Genomics ; 17(5): 339-351, 2018 09 27.
Article in English | MEDLINE | ID: mdl-29579147

ABSTRACT

One of the important and direct ways of investigating the function of a gene is to characterize the phenotypic consequences associated with loss or gain-of-function of the corresponding gene. These mutagenesis strategies have been successfully deployed in Arabidopsis, and subsequently extended to crop species including rice. Researchers have made vast advancements in the area of rice genomics and functional genomics, as it is a diploid plant with a relatively smaller genome size unlike other cereals. The advent of rice genome research and the annotation of high-quality genome sequencing along with the developments in databases and computer searches have enabled the functional characterization of unknown genes in rice. Further, with the improvements in the efficiency of regeneration and transformation protocols, it has now become feasible to produce sizable mutant populations in indica rice varieties also. In this review, various mutagenesis methods, the current status of the mutant resources, limitations and strengths of insertional mutagenesis approaches and also results obtained with suitable screens for stress tolerance in rice are discussed. In addition, targeted genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) or Cas9/single-guide RNA system and its potential applications in generating transgene-free rice plants through genome engineering as an efficient alternative to classical transgenic technology are also discussed.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Gene Editing/methods , Genome, Plant , Genomics , Oryza/genetics , RNA, Guide, Kinetoplastida/metabolism
9.
Front Chem ; 5: 97, 2017.
Article in English | MEDLINE | ID: mdl-29184886

ABSTRACT

Our previous findings on the screening of a large-pool of activation tagged rice plants grown under limited water conditions revealed the activation of Ribosomal Protein Large (RPL) subunit genes, RPL6 and RPL23A in two mutants that exhibited high water-use efficiency (WUE) with the genes getting activated by the integrated 4x enhancers (Moin et al., 2016a). In continuation of these findings, we have comprehensively characterized the Ribosomal Protein (RP) gene family including both small (RPS) and large (RPL) subunits, which have been identified to be encoded by at least 70 representative genes; RP-genes exist as multiple expressed copies with high nucleotide and amino acid sequence similarity. The differential expression of all the representative genes in rice was performed under limited water and drought conditions at progressive time intervals in the present study. More than 50% of the RP genes were upregulated in both shoot and root tissues. Some of them exhibited an overlap in upregulation under both the treatments indicating that they might have a common role in inducing tolerance under limited water and drought conditions. Among the genes that became significantly upregulated in both the tissues and under both the treatments are RPL6, 7, 23A, 24, and 31 and RPS4, 10 and 18a. To further validate the role of RP genes in WUE and inducing tolerance to other stresses, we have raised transgenic plants overexpressing RPL23A in rice. The high expression lines of RPL23A exhibited low Δ13C, increased quantum efficiency along with suitable growth and yield parameters with respect to negative control under the conditions of limited water availability. The constitutive expression of RPL23A was also associated with transcriptional upregulation of many other RPL and RPS genes. The seedlings of RPL23A high expression lines also showed a significant increase in fresh weight, root length, proline and chlorophyll contents under simulated drought and salt stresses. Taken together, our findings provide a secure basis for the RPL gene family expression as a potential resource for exploring abiotic stress tolerant properties in rice.

10.
Front Plant Sci ; 8: 1553, 2017.
Article in English | MEDLINE | ID: mdl-28966624

ABSTRACT

Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. Our previous studies on Ribosomal Protein Large subunit (RPL) genes provided insights into their stress responsive roles in rice. In the present study, we have explored the developmental and stress regulated expression patterns of Ribosomal Protein Small (RPS) subunit genes for their differential expression in a spatiotemporal and stress dependent manner. We have also performed an in silico analysis of gene structure, cis-elements in upstream regulatory regions, protein properties and phylogeny. Expression studies of the 34 RPS genes in 13 different tissues of rice covering major growth and developmental stages revealed that their expression was substantially elevated, mostly in shoots and leaves indicating their possible involvement in the development of vegetative organs. The majority of the RPS genes have manifested significant expression under all abiotic stress treatments with ABA, PEG, NaCl, and H2O2. Infection with important rice pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Rhizoctonia solani also induced the up-regulation of several of the RPS genes. RPS4, 13a, 18a, and 4a have shown higher transcript levels under all the abiotic stresses, whereas, RPS4 is up-regulated in both the biotic stress treatments. The information obtained from the present investigation would be useful in appreciating the possible stress-regulatory attributes of the genes coding for rice ribosomal small subunit proteins apart from their functions as house-keeping proteins. A detailed functional analysis of independent genes is required to study their roles in stress tolerance and generating stress- tolerant crops.

11.
3 Biotech ; 7(1): 1, 2017 May.
Article in English | MEDLINE | ID: mdl-28389895

ABSTRACT

Black gram (Vigna mungo L. Hepper), is an extensively studied food crop which is affected by many abiotic and biotic factors, especially diseases. The yield potential of Black gram is shallow due to lack of genetic variability and biotic stress susceptibility. Core biotic stress factors include mung bean yellow mosaic virus (MYMV), urdbean leaf crinkle virus (UCLV), wilt (Fusarium oxysporum) and powdery mildew (Erysiphe polygoni DC). Although many studies determine resistant varieties to a particular disease, however, it is often complimented by low yield and susceptibility to other diseases. Hence, this study focuses on investigating the genetic relationships among three varieties and nine accessions of black gram having disease resistance to previously described diseases and susceptibility using random amplified polymorphic deoxyribonucleic acid (RAPD) markers. A total of 33 RAPD primers were used for diversity analysis and yielded 206 fragments. Number of amplified fragments ranged from two (OPN-1) to 13 (OPF-1). The highest similarity coefficient was observed between IC-145202 and IC-164118 (0.921), while lowest similarity was between PU-31 and IC-145202 (0.572). The genetic diversity obtained in this study along with disease analysis suggests PU31as a useful variety for the development of markers linked to MYMV, UCLV, wilt and powdery mildew resistance by marker-assisted back cross breeding and facilitates the production of crosses with multiple disease resistance.

12.
J Genet ; 95(4): 895-903, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27994188

ABSTRACT

This study was carried out to improve the RPHR-1005, a stable restorer line of the popular medium slender grain type rice hybrid, DRRH-3 for bacterial blight (BB) and blast resistance through marker-assisted backcross breeding (MABB). Two major BB resistance genes, Xa21 and Xa33 and a major blast resistance gene, Pi2 were transferred to RPHR-1005 as two individual crosses. Foreground selection for Xa21, Xa33, Pi2, Rf3 and Rf4 was done by using gene-specific functional markers, while 59 simple sequence repeat (SSR) markers polymorphic between the donors and recipient parents were used to select the best plant possessing target resistance genes at each backcross generation. Backcrossing was continued till BC2F2 and a promising homozygous backcross derived line possessing Xa21+ Pi2 and another possessing Xa33 were intercrossed to stack the target resistance genes into the genetic background of RPHR-1005. At ICF4, 10 promising lines possessing three resistance genes in homozygous condition along with fine-grain type, complete fertility restoration, better panicle exertion and taller plant type (compared to RPHR-1005) were identified.


Subject(s)
Bacteria , Disease Resistance/genetics , Genetic Markers , Oryza/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Breeding , Genes, Plant , Genotype , Hybridization, Genetic , Microsatellite Repeats , Phenotype , Selection, Genetic
13.
Front Plant Sci ; 7: 1195, 2016.
Article in English | MEDLINE | ID: mdl-27555861

ABSTRACT

RPHR-1005, the stable restorer line of the popular medium slender (MS) grain type rice hybrid, DRRH-3 was improved in this study for resistance against bacterial blight (BB) and blast diseases through marker-assisted backcross breeding (MABB). In this study, four major resistance genes (i.e., Xa21 and Xa33 for BB resistance and Pi2 and Pi54 for blast resistance) have been transferred to RPHR-1005 using RPBio Patho-1 (possessing Xa21 + Pi2), RPBio Patho-2 (possessing Xa21 + Pi54) and FBR1-15EM (possessing Xa33) as the donors. Foreground selection was carried out using PCR-based molecular markers specific for the target resistance genes and the major fertility restorer genes, Rf3 and Rf4, while background selection was carried out using a set of parental polymorphic rice SSR markers and backcrossing was continued uptoBC2 generation. At BC2F2, plants possessing the gene combination- Xa21 + Pi2, Xa21 + Pi54 and Xa33 in homozygous condition and with >92% recovery of the recurrent parent genome (RPG) were identified and intercrossed to combine all the four resistance genes. Twenty-two homozygous, pyramid lines of RPHR-1005 comprising of three single-gene containing lines, six 2-gene containing lines, eight 3-gene containing lines, and five 4-gene containing lines were identified among the double intercross lines at F3 generation (DICF3). They were then evaluated for their resistance against BB and blast, fertility restoration ability and for key agro-morphological traits. While single gene containing lines were resistant to either BB or blast, the 2-gene, 3-gene, and 4-gene pyramid lines showed good level of resistance against both and/or either of the two diseases. Most of the 2-gene, 3-gene, and 4-gene containing pyramid lines showed yield levels and other key agro-morphological and grain quality traits comparable to the original recurrent parent and showed complete fertility restoration ability, with a few showing higher yield as compared to RPHR-1005. Further, the experimental hybrids derived by crossing the gene-pyramid lines of RPHR-1005 with APMS6A (the female parent of DRRH-3), showed heterosis levels equivalent to or higher than DRRH-3. The results of present study exemplify the utility of MABB for targeted improvement of multiple traits in hybrid rice.

14.
Physiol Mol Biol Plants ; 21(2): 301-4, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25964723

ABSTRACT

Pib is one of significant rice blast resistant genes, which provides resistance to wide range of isolates of rice blast pathogen, Magnaporthe oryzae. Identification and isolation of novel and beneficial alleles help in crop enhancement. Allele mining is one of the best strategies for dissecting the allelic variations at candidate gene and identification of novel alleles. Hence, in the present study, Pib was analyzed by allele mining strategy, and coding and non-coding (upstream and intron) regions were examined to identify novel Pib alleles. Allelic sequences comparison revealed that nucleotide polymorphisms at coding regions affected the amino acid sequences, while the polymorphism at upstream (non-coding) region affected the motifs arrangements. Pib alleles from resistant landraces, Sercher and Krengosa showed better resistance than Pib donor variety, might be due to acquired mutations, especially at LRR region. The evolutionary distance, Ka/Ks and phylogenetic analyzes also supported these results. Transcription factor binding motif analysis revealed that Pib (Sr) had a unique motif (DPBFCOREDCDC3), while five different motifs differentiated the resistance and susceptible Pib alleles. As the Pib is an inducible gene, the identified differential motifs helps to understand the Pib expression mechanism. The identified novel Pib resistant alleles, which showed high resistance to the rice blast, can be used directly in blast resistance breeding program as alternative Pib resistant sources.

15.
Gene ; 546(2): 250-6, 2014 Aug 10.
Article in English | MEDLINE | ID: mdl-24905652

ABSTRACT

Improvement of host plant resistance is one of the best methods to protect the yield from biotic stresses. Incorporation of major resistance genes or their variants into elite rice varieties will enhance the host plant resistance and its durability. Allele mining is a preferred choice to discover the novel allelic variants of major genes from wide range of germplasm. 'True' allele mining includes coding and noncoding regions, which are known to affect the plant phenotype, eventually. In this study, major blast resistance gene, Pita was analyzed by allele and promoter mining strategy and its different allelic variants were discovered from landraces and wild Oryza species. Polymorphisms at allelic sequences as well as transcription factor binding motif (TFBM) level were examined. At motif level, MYB1AT is present in Pita(Tadukan) and other resistance alleles, but was absent in the susceptible allele. Core promoter was demarked with 449 bp, employing serial promoter deletion strategy. Promoter with 1592 bp upstream region could express the gfp two fold higher than the core promoter. The identified Pita resistance allele (Pita(Konibora)) can be directly used in rice blast resistance breeding programs. Moreover, characterization of Pita core promoter led to deeper understanding of resistance gene's regulation and the identified core promoter can be utilized to express similar genes in rice.


Subject(s)
Alleles , Disease Resistance/genetics , Genes, Plant/physiology , Oryza/genetics , Polymorphism, Genetic , Promoter Regions, Genetic/genetics , Amino Acid Motifs
16.
Gene ; 531(1): 15-22, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23994683

ABSTRACT

Plant growth and yield are affected by many abiotic stresses like salinity, drought, cold and heavy metal; these stresses trigger up and down-regulate several genes through various transcription factors (TFs). Transcription factor binding motifs (TFBMs), located in the upstream region of the genes, associate with TFs to regulate the gene expression. Many factors, including the activation of miRNAs, which are encoded by genes having independent transcription units, regulate the gene expression. TFBMs in the regulatory region of miRNA sequences influence the miRNA expression, which in turn influences the expression of other genes in the cell. However, the current level of information available on TFBMs of miRNA involved in abiotic stress related defense pathway(s) is limited and in-depth studies in this direction may lead to a better understanding of their role in expression and regulation of defense responses in plants. In this study, various aspects related to genomic positions of pre-miRNA, prediction of TSS and TATA box positions and identification of known, unique motifs at regulatory regions of all the reported miRNAs of rice associated with different abiotic stresses are discussed. Sixteen motifs were identified in this study, of which nine are known cis-regulatory elements associated with various stresses, two strong motifs, (CGCCGCCG, CGGCGGCG) and five unique motifs which might play a vital role in the regulation of abiotic stresses related miRNA genes. Common motifs shared by miRNAs that are involved in more than one abiotic stresses were also identified. The motifs identified in this study will be a resource for further functional validation.


Subject(s)
Binding Sites , MicroRNAs/genetics , Nucleotide Motifs , Oryza/genetics , Oryza/metabolism , Stress, Physiological/genetics , Transcription Factors/metabolism , Base Sequence , Chromosome Mapping , Chromosomes, Plant , Position-Specific Scoring Matrices , Promoter Regions, Genetic , Protein Binding , Reproducibility of Results , TATA Box
17.
Biotechnol Adv ; 29(6): 703-14, 2011.
Article in English | MEDLINE | ID: mdl-21672619

ABSTRACT

Genetically modified crops are one of the prudent options for enhancing the production and productivity of crop plants by safeguarding from the losses due to biotic and abiotic stresses. Agrobacterium-mediated and biolistic transformation methods are used to develop transgenic crop plants in which selectable marker genes (SMG) are generally deployed to identify 'true' transformants. The commonly used SMG obtained from prokaryotic sources when employed in transgenic plants pose risks due to their lethal nature during selection process. In the recent past, some non-lethal SMGs have been identified and used for selection of transformants with increased precision and high selection efficiency. Considering the concerns related to bio-safety of the environment, it is desirable to remove the SMG in order to maximize the commercial success through wide adoption and public acceptance of genetically modified (GM) food crops. In this review, we examine the availability, and the suitability of wide range of non-lethal selection markers and elimination of SMG methods to develop marker-free transgenics for achieving global food security. As the strategies for marker-free plants are still in proof-of-concept stage, adaptation of new genomics tools for identification of novel non-lethal marker systems and its application for developing marker-free transgenics would further strengthen the crop improvement program.


Subject(s)
Genes, Reporter , Genetic Engineering , Genetic Markers , Plants, Genetically Modified , Transformation, Genetic , Agrobacterium , Vitis
18.
Biotechnol Adv ; 28(4): 451-61, 2010.
Article in English | MEDLINE | ID: mdl-20188810

ABSTRACT

Enormous sequence information is available in public databases as a result of sequencing of diverse crop genomes. It is important to use this genomic information for the identification and isolation of novel and superior alleles of agronomically important genes from crop gene pools to suitably deploy for the development of improved cultivars. Allele mining is a promising approach to dissect naturally occurring allelic variation at candidate genes controlling key agronomic traits which has potential applications in crop improvement programs. It helps in tracing the evolution of alleles, identification of new haplotypes and development of allele-specific markers for use in marker-assisted selection. Realizing the immense potential of allele mining, concerted allele mining efforts are underway in many international crop research institutes. This review examines the concepts, approaches and applications of allele mining along with the challenges associated while emphasizing the need for more refined 'mining' strategies for accelerating the process of allele discovery and its utilization in molecular breeding.


Subject(s)
Alleles , Crops, Agricultural/genetics , Data Mining/methods , Genomics/methods , Plants, Genetically Modified/genetics , Sequence Analysis, DNA/methods , Databases, Genetic
19.
Mol Genet Genomics ; 274(6): 569-78, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16228246

ABSTRACT

In order to understand the molecular mechanisms involved in the gene-for-gene type of pathogen resistance, high-resolution genetic and physical mapping of resistance loci is required to facilitate map-based cloning of resistance genes. Here, we report the molecular mapping and cloning of a dominant gene (Pi-k ( h )) present in the rice line Tetep, which is associated with resistance to rice blast disease caused by Magnaporthe grisea. This gene is effective against M. grisea populations prevalent in the Northwestern Himalayan region of India. Using 178 sequence tagged microsatellite, sequence-tagged site, expressed sequence tag and simple sequence repeat (SSR) markers to genotype a population of 208 F(2) individuals, we mapped the Pi-k ( h ) gene between two SSR markers (TRS26 and TRS33) which are 0.7 and 0.5 cM away, respectively, and can be used in marker-assisted-selection for blast-resistant rice cultivars. We used the markers to identify the homologous region in the genomic sequence of Oryza sativa cv. Nipponbare, and a physical map consisting of two overlapping bacterial artificial chromosome and P1 artificial chromosome clones was assembled, spanning a region of 143,537 bp on the long arm of chromosome 11. Using bioinformatic analyses, we then identified a candidate blast-resistance gene in the region, and cloned the homologous sequence from Tetep. The putative Pi-k ( h ) gene cloned from Tetep is 1.5 kbp long with a single ORF, and belongs to the nucleotide binding site-leucine rich repeat class of disease resistance genes. Structural and expression analysis of the Pi-k ( h ) gene revealed that its expression is pathogen inducible.


Subject(s)
Chromosome Mapping , Genes, Plant , Magnaporthe/pathogenicity , Oryza/genetics , Oryza/immunology , Amino Acid Sequence , Cloning, Molecular , Immunity, Innate/genetics , Microsatellite Repeats , Molecular Sequence Data , Oryza/microbiology , Plant Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...