Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Lett Appl Microbiol ; 65(3): 249-255, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28667752

ABSTRACT

In the recent years, 4-methylumbelliferone (4-MU) has been gaining importance, both as an anti-cancer agent and as a dietary supplement. The aim of this study was to determine the effectiveness of 4-MU as a carbon source for potential probiotic bacteria Lactobacillus helveticus 2126. For this purpose, a series of plate assays and infrared spectroscopy (FTIR) were used for 4-MU before and after the treatment with L. helveticus 2126. The plate assays indicated an initial inhibition followed by utilization of 4-MU that stimulated bacterial growth. A significant shift was observed in the FTIR peaks, which also have suggested possible extracellular activity of the bacteria for 4-MU utilization. SIGNIFICANCE AND IMPACT OF THE STUDY: 4-Methylumbelliferone (4-MU) is a widely used chloretic and is currently under research for treating colon cancer. Preliminary studies suggest that it has the potential to be used as an effective and sustainable prebiotic for the human microbiome, as it can be naturally obtained from plants. This manuscript describes the effectiveness of 4-MU as a carbon source for the probiotic bacteria Lactobacillus helveticus. Our study also suggests the role of bacterial superoxide dismutase in transforming 4-MU as a possible prebiotic for the human microbiome.


Subject(s)
Hymecromone/metabolism , Lactobacillus helveticus/metabolism , Carbon/metabolism , Culture Media/metabolism , Humans , Lactobacillus helveticus/genetics , Lactobacillus helveticus/growth & development , Probiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...