Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Small ; : e2402403, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682732

ABSTRACT

Viologen-based covalent organic networks represent a burgeoning class of materials distinguished by their captivating properties. Here, supramolecular chemistry is harnessed to fabricate polyrotaxanated ionic covalent organic polymers (iCOP) through a Schiff-base condensation reaction under solvothermal conditions. The reaction between 1,1'-bis(4-aminophenyl)-[4,4'-bipyridine]-1,1'-diium dichloride (DPV-NH2) and 1,3,5-triformylphloroglucinol (TPG) in various solvents yields an iCOP-1 and iCOP-2. Likewise, employing cucurbit[7]uril (CB[7]) in the reaction yielded polyrotaxanated iCOPs, denoted as iCOP-CB[7]-1 and iCOP-CB[7]-2. All four iCOPs exhibit exceptional stability under the acidic and basic conditions. iCOP-CB[7]-2 displays outstanding electrocatalytic Oxygen Evolution Reaction (OER) performance, demanding an overpotential of 296 and 332 mV at 10 and 20 mA cm-2, respectively. Moreover, the CB[7] integrated iCOP-2 exhibits a long-term stable nature for 30 h in 1 m KOH environment. Further, intrinsic activity studies like TOF show a 4.2-fold increase in generation of oxygen (O2) molecules than the bare iCOP-2. Also, it is found that iCOP-CB[7]-2 exhibits a high specific (19.48 mA cm-2) and mass activity (76.74 mA mg-1) at 1.59 V versus RHE. Operando-EIS study evident that iCOP-CB[7]-2 commences OER at a relatively low applied potential of 1.5 V versus RHE. These findings pave the way for a novel approach to synthesizing various mechanically interlocked molecules through straightforward solvothermal conditions.

2.
ACS Appl Mater Interfaces ; 16(5): 5965-5976, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38263906

ABSTRACT

The development of low-cost, efficient catalysts for electrocatalytic water splitting to generate green hydrogen is a hot topic among researchers. Herein, we have developed a highly efficient heterostructure of CoCr-LDH on NiO on nickel foam (NF) for the first time. The preparation strategy follows the simple annealing of a cleaned NF without using any Ni salt precursor, followed by the growth of CoCr-LDH nanosheets over the surface-oxidized NF. The CoCr-LDH/NiO/NF catalyst shows excellent electrocatalytic activity and stability toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in a 1 M KOH solution. For OER, only 253 mV and for HER, only 185 mV overpotentials are required to attain a 50 mA cm-2 current density. Also, the long-term stability of both the OER and HER for 60 h proves its robustness. The turnover frequency value for the OER increased 1.85 times after the heterostructure formation compared to bare CoCr-LDH. The calculated Faradaic efficiency values of 97.4 and 94.75% for the OER and HER revealed the high intrinsic activity of the heterostructure. Moreover, the heterostructure only needs 1.57 V of cell voltage when acting as both the anode and the cathode to achieve a 10 mA cm-2 current density. The long-term stability of 60 h for the total water-splitting process proves its excellent performance. Several systematic pre- and post-experiment characterizations prove its durable nature. These excellent OER and HER activities and stabilities are attributed to the surface-modified electronic structure and thin nanosheet-like surface morphology of the heterostructure. The thin, wide, and modified surface of the catalyst facilitates the diffusion of ions (reactants) and gas molecules (products) at the electrode/electrolyte interface. Furthermore, electron transfer from n-type CoCr-LDH to p-type NiO results in enhanced electronic conductivity. This study demonstates the effective design of a self-supported heterostructure with minimal synthetic steps to generate a bifunctional electrocatalyst for water splitting, contributing to the greater cause of green hydrogen economy.

3.
Inorg Chem ; 62(35): 14448-14458, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37610340

ABSTRACT

Electrocatalytic water splitting has emerged as a promising approach for clean and sustainable hydrogen production. The LaFeO3 perovskite structure exhibits intriguing properties such as mixed ionic-electronic conductivity, high stability, and abundant active sites for electrocatalysis. However, its OER and HER activities are limited by the sluggish kinetics of these reactions. To overcome this limitation, Au nanoparticles (NPs) are decorated onto the surface of LaFeO3 through a facile synthesis method. The Au NPs on the LaFeO3 surface provide additional active sites for water splitting reactions, promoting the adsorption and activation of water molecules. The presence of Au enhances the charge transfer kinetics via the heterostructure between Au NPs and LaFeO3 and facilitates electron transport during the OER and HER process. The catalyst requires only 318 and 199 mV as overpotential to attain a 50 mA cm-2 current density in 1 M KOH solution. Our results demonstrate that the Au@LaFeO3 catalyst exhibits significantly improved electrocatalytic activity compared to pure LaFeO3 and other catalysts reported in the literature. The enhanced performance is attributed due to the synergistic effects between Au NPs and LaFeO3, including an increased surface area, improved conductivity, and optimized surface energetics. Overall, the Au-decorated LaFeO3 catalyst presents a promising candidate for efficient electrocatalytic water splitting, providing a pathway for sustainable hydrogen production. The insights gained from this study contribute to the development of advanced catalysts for renewable energy technologies and pave the way for future research in the field of electrochemical water splitting.

4.
Inorg Chem ; 62(30): 11817-11828, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37437220

ABSTRACT

Water electrolysis is considered as one of the alternative potential approaches for producing renewable energy. Due to the sluggish kinetic nature of oxygen evolution reaction (OER), it encounters a significant overpotential to achieve water electrolysis. Hence, the advancement of cost-effective transition metal-based catalysts toward water splitting has gained global attention in recent years. In this work, the doping of Fe over amorphous NiWO4 increased the OER activity effectively and achieved stable oxygen evolution in the alkaline medium, which show better electrocatalytic activity as compared to crystalline tungstate. As NiWO4 has poor activity toward OER in the alkaline medium, the doping of Fe3+ will tune the electronic structure of Ni in NiWO4 and boost the OER activity. The as-synthesized Fe-doped amorphous NiWO4 exhibits a low overpotential of 230 mV to achieve a current density of 10 mA cm-2 and a lower Tafel slope value of 48 mV dec-1 toward OER in 1.0 M KOH solution. The catalyst also exhibits long-term static stability of 30 h during chronoamperometric study. The doping of Fe improves the electronic conductivity of Ni-3d states in NiWO4 which play a dominant role for better catalytic activity via synergistic interaction between Fe and active Ni sites. In future, these results offer an alternative route for precious metal-free catalysts in alkaline medium and can be explicitly used in various tungstate-based materials to increase the synergism between the doped atom and metal ions in tungstate-based materials for further improvement in the electrocatalytic performance.

5.
Inorg Chem ; 62(6): 2726-2737, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36715550

ABSTRACT

Exploiting an affordable, durable, and high-performance electrocatalyst for the oxygen evolution reaction (OER) under lower pH condition (acidic) is highly challengeable and much attractive toward the hydrogen-based energy technologies. A spinel CoCr2O4 is observed as a potential noble-metal-free candidate for OER in alkaline medium. The presence of Cr further leads to electronic structure modulation of Co3O4 and thereby greatly increases the corrosive resistance toward OER in acidic environment. Herein, a typical CoCr2O4 with three different morphologies was synthesized for the very first time and employed as an electrocatalyst for OER in alkaline (1 M KOH) and acidic (0.5 M H2SO4) medium. Moreover, different morphologies display a different intrinsic exposed active site and thereby display different electrocatalytic activities. Likewise, the CoCr2O4 Mic (synthesized by the microwave heating method) displays a higher catalytic activity toward OER and delivers a low overpotential of 293 and 290 mV to attain 10 mA/cm2 current density and smaller Tafel slope values of 40 and 151 mV/dec, respectively, in alkaline and acidic environment than the synthesized CoCr2O4 Wet (wet-chemically synthesized) and CoCr2O4 Hyd (hydrothermally synthesized). Moreover, CoCr2O4 Mic exhibits a long-term durability of 24 h (1 M KOH) and 10.5 h (0.5 M H2SO4). The optimized Co-O bond energy in OER condition makes the CoCr2O4 Mic superior than the CoCr2O4 Hyd and CoCr2O4 Wet. Moreover, the substitution of Cr induces the electron delocalization around the Co active species and thereby, positive shifting of the redox potential leads to providing an optimal binding energy for OER intermediates. Also, interestingly, this work represents a catalytic activity trend by a simple experimental result without any complex theoretical calculation. The morphology-dependent electrocatalytic activity obtained in this work will provide a new strategy in the field of electrochemical conversion and energy storage application.

6.
Inorg Chem ; 61(51): 21055-21066, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36523209

ABSTRACT

Water electrolysis encounters a challenging problem in designing a highly efficient, long durable, non-noble metal-free electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, in our work, a two-step hydrothermal reaction was performed to construct a hierarchal NiFe-layer double hydroxide (LDH)/CuS over copper foam for the overall water splitting reaction. While employed the same as an anode material, the designed heterostructure electrode NiFe-LDH/CuS/Cu exhibits excellent OER performance and it demands 249 mV overpotential to reach a current density of 50 mA cm-2 with a lower Tafel slope value of 81.84 mV dec-1. While as a cathode material, the NiFe-LDH/CuS/Cu shows superior HER performance and it demands just 28 mV of overpotential value to reach a current density of 10 mA cm-2 and a lower Tafel slope value of 95.98 mV dec-1. Hence, the NiFe-LDH/CuS/Cu outperforms the commercial Pt/C and RuO2 in terms of activity in HER and OER, respectively. Moreover, when serving as both the cathode and anode catalysts in an electrolyzer for total water splitting, the synthesized electrode only needs a cell potential of 1.55 V versus RHE to reach a current density of 20 mA cm-2 and long-term durability for 25 h in alkaline media. To study the interfacial electron transfer, Mott-Schottky experiments were performed, representing that the electron is transferred from n-type NiFe-LDH to p-type CuS as a result of creating the p-n junction in NiFe-LDH/CuS/Cu. The formation of this p-n junction allows the LDH layer to be more active toward the OH- adsorption and thereby could allow the OER or HER with a less energy input. This work affords another route to a cost effective, highly efficient catalyst toward producing clean energy across the globe.

7.
Inorg Chem ; 61(42): 16895-16904, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36221930

ABSTRACT

To generate green hydrogen by water electrolysis, it is vital to develop highly efficient electrocatalysts for the oxygen evolution reaction (OER). The utilization of various 3d transition metal-based layered double hydroxides (LDHs), especially NiFe-LDH, has gained vast attention for OER under alkaline conditions. However, the lack of a proper electronic structure of the NiFe-LDH and low stability under high-pH conditions limit its large-scale application. To overcome these difficulties, in this study, we constructed an Sn-doped NiFe-LDH material using a simple wet-chemical method. The doping of Sn will synergistically increase the active surface sites of NiFe-LDH. The highly active NiFe-LDH Sn0.015(M) shows excellent OER activity by requiring an overpotential of 250 mV to drive 10 mA/cm2 current density, whereas the bare NiFe-LDH required an overpotential of 295 mV at the same current density. Also, NiFe-LDH Sn0.015(M) shows excellent long-term stability for 50 h in 1 M KOH and also exhibits a higher TOF value of 0.495 s-1, which is almost five times higher than that of bare NiFe-LDH. This study highlights Sn doping as an effective strategy for the development of low-cost, effective, stable, self-supported electrocatalysts with a high current density for improved OER and other catalytic applications in the near future.

8.
ACS Appl Mater Interfaces ; 14(41): 46581-46594, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36194123

ABSTRACT

Finding the active center in a bimetallic zeolite imidazolate framework (ZIF) is highly crucial for the electrocatalytic oxygen evolution reaction (OER). In the present study, we constructed a bimetallic ZIF system with cobalt and manganese metal ions and subjected it to an electrospinning technique for feasible fiber formation. The obtained nanofibers delivered a lower overpotential value of 302 mV at a benchmarking current density of 10 mA cm-2 in an electrocatalytic OER study under alkaline conditions. The obtained Tafel slope and charge-transfer resistance values were 125 mV dec-1 and 4 Ω, respectively. The kinetics of the reaction is mainly attributed from the ratio of metals (Co and Mn) present in the catalyst. Jahn-Teller distortion reveals that the electrocatalytic active center on the Mn-incorporated ZIF-67 nanofibers (Mn-ZIF-67-NFs) was found to be Mn3+ along with the Mn2+ and Co2+ ions on the octahedral and tetrahedral sites, respectively, where Co2+ ions tend to suppress the distortion, which is well supported by density functional theory analysis, molecular orbital study, and magnetic studies.

9.
Nanoscale ; 14(29): 10360-10374, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35708550

ABSTRACT

The development of efficient electrocatalysts for the water splitting process and understanding their fundamental catalytic mechanisms are highly essential to achieving high performance in energy conversion technologies. Herein, we have synthesised spinel nickel ferrite nanofibers (NiFe2O4-NFs) via an electrospinning (ES) method followed by a carbonization process. The resultant fiber was subjected to electrocatalytic water splitting reactions in alkaline medium. The catalytic efficiency of the NiFe2O4-NFs in OER was highly satisfactory. But it is not high enough to catalyse the HER process. Hence, palladium ions were decorated as nanosheets on NiFe2O4-NFs as a heterostructure to improve the catalytic efficiency for HER. Density functional theory (DFT) confirms that the addition of palladium to NiFe2O4-NFs helps to reduce the effect of catalyst poisoning and improve the efficiency of the catalyst. In an alkaline hybrid electrolyser, the required cell voltage was observed as 1.51 V at a fixed current density of 10 mA cm-2.

10.
Inorg Chem ; 61(22): 8570-8584, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35613470

ABSTRACT

Internal Ni-vacancy-enriched spherical AuNi nanoalloys (AuNi1-2-T) have been prepared via a noble electrochemical etching method. AuNi1.5-T showed the highest oxygen evolution reaction (OER) activity compared to bare AuNi1.5, and it demands only 239 mV overpotential, which was 134 mV lesser than the overpotential required by commercial RuO2 at 10 mA cm-2 current density in a 1 M KOH solution (pH = 14). The calculated turnover frequency (TOF) value for AuNi1.5-T (0.0229 s-1) was 11.74 times higher than that of AuNi1.5 (0.00195 s-1). Also, the electrochemically activated AuNi1.5-T showed superior neutral water oxidation activity by demanding only 335 mV overpotential with a TOF value of 0.000135 s-1 in a 1 M Na2SO4 solution (pH = 7) at 10 mA cm-2. The long-term stability studies (over 60 h) reveal the excellent robustness of an electrochemically treated alloy system. Density functional theory based electronic structure calculations showed that in the case of AuNi and AuNi1.5, Au d, Au s, and Ni d orbitals have significant contributions, whereas in the Ni-vacant systems, the density of states is mainly governed by d orbitals of Au and Ni. Also, the Ni-vacant system possesses a work function value of 4.96 eV, which is lower than that of the pristine system (5.27 eV) and thereby favored OH- binding with an optimum adsorption energy. This result is in reasonable agreement with the experimental outcome of an accelerated OER in a vacancy-enriched Ni-rich AuNi alloy system. Also, mechanistic analysis reveals that the creation of a Ni vacancy can effectively alter the overall mechanism of the OER and thereby facilitate the same with a lower applied energy.

11.
Inorg Chem ; 61(10): 4502-4512, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35230844

ABSTRACT

Vast attention from researchers is being given to the development of suitable oxygen evolution reaction (OER) electrocatalysts via water electrolysis. Being highly abundant, the use of transition-metal-based OER catalysts has been attractive more recently. Among the various transition-metal-based electrocatalysts, the use of layered double hydroxides (LDHs) has gained special attention from researchers owing to their high stability under OER conditions. In this work, we have reported the synthesis of trimetallic NiCoV-LDH via a simple wet-chemical method. The synthesized NiCoV-LDH possesses aggregated sheet-like structures and is screened for OER studies in alkaline medium. In the study of OER activity, the as-prepared catalyst demanded 280 mV overpotential and this was 42 mV less than the overpotential essential for pristine NiCo-LDH. Moreover, doping of a third metal into the NiCo-LDH system might lead to an increase in TOF values by almost three times. Apart from this, the electronic structural evaluation confirms that the doping of V3+ into NiCo-LDH could synergistically favor the electron transfer among the metal ions, which in turn increases the activity of the prepared catalyst toward the OER.

12.
Inorg Chem ; 61(3): 1685-1696, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35014806

ABSTRACT

The generation of pure H2 from a neutral electrolyte solution represents a transformative route with low cost and environmentally friendly nature. However, the complex kinetics of hydrogen evolution reaction (HER) via water electrolysis make its practical application to be difficult. Herein, we have reported Ru-doping-induced formation of VS4 nanostructures with a rich S vacancy for neutral HER in a 0.2 M phosphate buffer solution. The Ru-doped VS4 demands an overpotential value of 160 mV at 10 mA/cm2 current density with a lower catalyst loading of 0.1 mg/cm2, while pristine VS4 demands a 374 mV overpotential with the same mass loading. 60 hours of chronoamperometric study reveals the excellent stability of Ru-doped VS4 materials, which is the highest amount of time ever reported for neutral HER. The marginal degradation of a catalyst under a long-term stability study was confirmed through inductively coupled plasma mass spectrometry (ICP-MS) analysis. The introduction of Ru to the VS4 lattice leads to a 4.35-fold increase in the turnover-frequency values compared to those of bare VS4 nanostructures. The higher HER activity of S-vacancy-enriched VS4 materials is thought to originate through effective water adsorption in S vacancy and Ru3+ sites followed by the dissociation of a H2O molecule, and S22- efficiently converts Had to H2. Also, post-HER characterization reveals that the transformation of some Ru3+ to Ru0 additionally favored the HER by providing a better H adsorption site under a static cathodic potential.

13.
ACS Appl Mater Interfaces ; 14(1): 1077-1091, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34951298

ABSTRACT

Electrocatalytic water splitting has gained vast attention in recent decades for its role in catalyzing hydrogen production effectively as an alternative to fossil fuels. Moreover, the designing of highly efficient oxygen evolution reaction (OER) electrocatalysts across the universal pH conditions was more challengeable as in harsh anodic potentials, it questions the activity and stability of the concerned catalyst. Generally, geometrical engineering and electronic structural modulation of the catalyst can effectively boost the OER activity. Herein, a Co-doped RuO2 nanorod material is developed and used as an OER electrocatalyst at different pH conditions. Co-RuO2 exhibits a lower overpotential value of 238 mV in an alkaline environment (1 M KOH) with a Tafel slope value of 48 mV/dec. On the other hand, in acidic, neutral, and near-neutral environments, it required overpotentials of 328, 453, and 470 mV, respectively, to attain a 10 mA/cm2 current density. It is observed that doping of Co into the RuO2 could synergistically increase the active sites with the enhanced electrophilic nature of Ru4+ to accelerate OER in all of the pH ranges. This study finds the applicability of earth-abundant-based metals like Co to be used in universal pH conditions with a simple doping technique. Further, it assured the stable nature in all pH electrolytes and needs to be further explored with other metals in the future.

14.
Inorg Chem ; 60(24): 19429-19439, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34821497

ABSTRACT

Development of a low-cost transition metal-based catalyst for water splitting is of prime importance for generating green hydrogen on an industrial scale. Recently, various transition metal-based oxides, hydroxides, sulfides, and other chalcogenide-based materials have been synthesized for developing a suitable anode material for the oxygen evolution reaction (OER). Among the various transition metal-based catalysts, their oxides have received much consideration for OER, especially in lower pH condition, and MnO2 is one of the oxides that have widely been used for the same. The large variation in the structural disorder of MnO2 and internal resistance at the electrode-electrolyte interfaces have limited its large-scale application. By considering the above limitations of MnO2, here in this work, we have designed Ni-doped MnO2 via a simple wet-chemical synthetic route, which has been successfully applied for OER application in 0.1 M KOH solution. Doping of various quantities of Ni into the MnO2 lattices improved the OER properties, and for achieving 10 mA/cm2 current density, the Ni-doped MnO2 containing 0.02 M of Ni2+ ions (coined as MnO2-Ni0.002(M)) demands only 445 mV overpotential, whereas the bare MnO2 required 610 mV overpotential. It has been proposed that the incorporation of nickel ions into the MnO2 lattices leads to an electron transfer from the Ni3+ ions to Mn4+, which in turn facilitates the Jahn-Teller distortion in the Mn-O octahedral unit. This electron transfer and the creation of a structural disorder in the Mn sites result in the improvization of the OER properties of the MnO2 materials.

15.
Dalton Trans ; 50(38): 13176-13200, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34617532

ABSTRACT

The replacement of noble metals with alternative electrocatalysts is highly demanded for water splitting. From the exploration of 3D -transition metal based heterostructures, engineering at the nano-level brought more enhancements in active sites with reduced overpotentials for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). However, recent developments in 3D transition metal based heterostructures like direct growth on external substrates (Ni foam, Cu foam) gave highly impressive activities and stabilities. Research needs to be focused on how the active sites can be enhanced further with 3D heterostructures of transition metals by studying them with various counterparts like hydroxides, layered double hydroxides and phosphides for empowering both OER and HER applications. This perspective covers the way to enlarge the utilization of 3D heterostructures successfully in terms of reduced overpotentials, highly exposed active sites, increased electrical conductivity, porosity and high-rate activity. From the various approaches of growth of transition metal based 3D heterostructures, it is easy to fine tune the active sites to have a viable production of hydrogen with less applied energy input. Overall, this perspective outlines a direction to increase the number of active sites on 3D transition metal based heterostructures by growing on 3D foams for enhanced water splitting applications.

16.
Inorg Chem ; 60(20): 15818-15829, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34601871

ABSTRACT

The development of a highly efficient electrocatalyst for the oxygen evolution reaction (OER) with a lower overpotential and high intrinsic activity is highly challenging owing to its sluggish kinetic behavior. As an alternative to the state-of-the-art OER catalyst, recently, transition-metal-based hydroxide materials have been shown to play important roles for the same. Owing to the high earth abundance of various Ni-based hydroxide and its derivatives, these are known to be highly studied materials for the OER. Herein, we report a simple wet-chemical synthesis of metallic gold-incorporated (by varying the concentration of Au3+ ions) Ni(OH)2 nanosheets as an active and stable electrocatalyst for the OER in 1 M KOH medium. The Au-Ni(OH)2 (2) catalyst demanded a low overpotential of 288 mV to attain a geometric current density of 10 mA/cm2 with a lower Tafel value of 55 mV/dec compared to bare Ni(OH)2 with a lower mass loading of only 0.1 mg/cm2. Tafel slope analysis reveals that the incorporation of metallic gold on the hydroxide surfaces could alter the mechanistic pathways of the overall OER reaction. It has been proposed that the incorporation of metallic gold over the Ni(OH)2 surfaces led to a change in the electronic structure of the electroactive nickel sites (Jahn-Teller distortion), which favors the OER by electronic aspects.

17.
Inorg Chem ; 60(13): 9899-9911, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34134481

ABSTRACT

Metal-organic framework (MOF)-based materials have attracted attention in recent times owing to their remarkable properties such as regulatable pore size, high specific surface area, and elasticity in their network topology, geometry, dimension, and chemical functionality. It is believed that the incorporation of a MOF network into a fibrous matrix results in the improvement of the electrocatalytic properties of the material. Herein, we have synthesized a Co-incorporated MOF-5-based fibrous material by a simple wet-chemical method, followed by an electrospinning (ES) process. The as-prepared Co-incorporated MOF-5 microfibers were employed as an electrocatalyst for the oxygen evolution reaction (OER) in 1 M KOH electrolyte. The catalyst demands a lower overpotential of 240 mV to attain a current density of 10 mA/cm2 with a lower Tafel slope value of 120 mV/dec along with a charge transfer resistance value of 2.9 Ω from electron impedance spectroscopy (EIS) analysis. From these results, it has been understood that the incorporation of Co metal into the MOF-5 microfibrous network has significantly improved the OER performance, which made them a potential entrant in other energy-related applications also.

18.
Dalton Trans ; 50(21): 7198-7211, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33899068

ABSTRACT

The use of nanomaterials (NMs) in various applications via multidisciplinary approaches is highly necessary in this era. In this line, the impact of noble metals in organic media for both catalysis and surface-enhanced Raman spectroscopic (SERS) studies is most interesting and also has a wider scope in various fields. Nonetheless, the catalytic reduction of aromatic nitro compounds is difficult with poor solubility in aqueous media, and reduction also is less feasible in the absence of noble metal-based catalysts. Thus, the choice of noble metal-based catalysts for the catalytic reduction of nitro compounds in organic media is one of the emerging methods with high selectivity towards products. Moreover, the superior catalytic activity of Pt NPs provides a higher rate constant value with a low dielectric constant of organic solvents. Herein, for the first time, we synthesised highly stable metallic Pt nanoparticles (NPs) anchored on bio-scaffold deoxyribonucleic acid (DNA) for two different applications. The advantage of highly controlled nucleation of NPs over DNA in organic media results in a spherical morphology with a particle diameter of 2.47 ± 2.11 nm and 2.84 ± 1.14 nm. A stable colloidal solution of Pt NPs was prepared by a simple wet chemical sodium borohydride reduction method within 15 minutes from the start of the reaction. Two sets of Pt NPs were synthesised by varying the molar ratio of the concentration of DNA to PtCl4 concentration and were named Pt@DNA (0.05 M) and Pt@DNA (0.06 M), respectively. The prepared Pt@DNA was effectively studied for two potential applications such as the SERS studies and catalytic reduction of nitro compounds. In catalysis, a higher catalytic rate was observed in the case of 4-nitrophenol (4-NP) at a rate of 8.43 × 10-2 min-1. In the SERS study, the reduction of the interparticle distance to below 5 nm facilitates the creation of a large number of hot spots for probe detection. Here, we used 10-3 M methylene blue (MB) as a probe molecule, and the enhancement factor (EF) value was calculated at different concentrations ranging from 10-3 M to 10-6 M. The highest enhancement factor (EF) value obtained was 2.91 × 105 for Pt@DNA (0.05 M). The as-synthesised stable Pt@DNA organosol can be exploited for other potential applications related to energy, sensor and medicinal fields in the near future.


Subject(s)
Metal Nanoparticles , Platinum , Spectrum Analysis, Raman , Catalysis
19.
Adv Colloid Interface Sci ; 291: 102399, 2021 May.
Article in English | MEDLINE | ID: mdl-33774595

ABSTRACT

Surface Enhanced Raman Scattering (SERS) is a field of research that has shown promising application in the analysis of various substrate molecules by means of rough metallic surfaces. In directing the enhancement of substrate molecules in micro and nano-molar concentrations, plasmonic coupling of metal nanoparticles (NPs), morphology of metal NPs and the closely arrangement of rough metal surfaces that produces 'hot spots' can effectively increase the so-called enhancement factor (EF) that will be applicable in various fields. As the mechanistic aspects are still not clear, research has been triggered all over the world for the past two decades to have a clear understanding in chemical and electromagnetic effects. As the reproducibility of intensity of signals at low concentrations of probe molecules is of a big concern, metal NPs with various scaffolds were prepared and recently bio-molecule, DNA has been studied and showed promising advantages. This review first time highlights metal NPs with DNA interface as an effective rough metallic surface for SERS with high intensity and also with better reproducibility. Based on this review, similar kinds of scaffolds like DNA can be used to further analyze SERS activities of various metal NPs with different morphologies to have high intense signals at low concentrations of probe molecules.


Subject(s)
Metal Nanoparticles , Nanostructures , DNA , Reproducibility of Results , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...