Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37896180

ABSTRACT

Diabetic retinopathy (DR) is a microvascular complication associated with vascular endothelial growth factor (VEGF) overexpression. Therapeutic delivery to the retina is a challenging phenomenon due to ocular biological barriers. Sorafenib tosylate (ST) is a lipophilic drug with low molecular weight, making it ineffective at bypassing the blood-retinal barrier (BRB) to reach the target site. Cubosomes are potential nanocarriers for encapsulating and releasing such drugs in a sustained manner. The present research aimed to compare the effects of sorafenib-tosylate-loaded cubosome nanocarriers (ST-CUBs) and a sorafenib tosylate suspension (ST-Suspension) via subconjunctival route in an experimental DR model. In this research, ST-CUBs were prepared using the melt dispersion emulsification technique. The distribution of prepared nanoparticles into the posterior eye segments was studied with confocal microscopy. The ST-CUBs were introduced into rats' left eye via subconjunctival injection (SCJ) and compared with ST-Suspension to estimate the single-dose pharmacokinetic profile. Streptozotocin (STZ)-induced diabetic albino rats were treated with ST-CUBs and ST-Suspension through the SCJ route once a week for 28 days to measure the inhibitory effect of ST on the diabetic retina using histopathology and immunohistochemistry (IHC) examinations. Confocal microscopy and pharmacokinetic studies showed an improved concentration of ST from ST-CUBs in the retina. In the DR model, ST-CUB treatment using the SCJ route exhibited decreased expression levels of VEGF, pro-inflammatory cytokines, and adhesion molecules compared to ST-Suspension. From the noted research findings, it was concluded that the CUBs potentially enhanced the ST bioavailability. The study outcomes established that the developed nanocarriers were ideal for delivering the ST-CUBs via the SCJ route to target the retina for facilitated DR management.

2.
Gels ; 8(5)2022 May 19.
Article in English | MEDLINE | ID: mdl-35621614

ABSTRACT

Gels are semisolid, homogeneous systems with continuous or discrete therapeutic molecules in a suitable lipophilic or hydrophilic three-dimensional network base. Innovative gel systems possess multipurpose applications in cosmetics, food, pharmaceuticals, biotechnology, and so forth. Formulating a gel-based delivery system is simple and the delivery system enables the release of loaded therapeutic molecules. Furthermore, it facilitates the delivery of molecules via various routes as these gel-based systems offer proximal surface contact between a loaded therapeutic molecule and an absorption site. In the past decade, researchers have potentially explored and established a significant understanding of gel-based delivery systems for drug delivery. Subsequently, they have enabled the prospects of developing novel gel-based systems that illicit drug release by specific biological or external stimuli, such as temperature, pH, enzymes, ultrasound, antigens, etc. These systems are considered smart gels for their broad applications. This review reflects the significant role of advanced gel-based delivery systems for various therapeutic benefits. This detailed discussion is focused on strategies for the formulation of different novel gel-based systems, as well as it highlights the current research trends of these systems and patented technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...