Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Pharmaceutics ; 11(2)2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30736367

ABSTRACT

Cefepime is an antibiotic with a broad spectrum of antimicrobial activity. However, this antibiotic has several side effects and a high degradation rate. For this reason, the preparation and characterization of new liposomes that are able to encapsulate this antibiotic seem to be an important research line in the pharmaceutical industry. Anionic and cationic liposomes were prepared and characterized. All cationic structures contained the same cationic surfactant, N,N,N-triethyl-N-(12-naphthoxydodecyl)ammonium. Results showed a better encapsulation-efficiency percentage (EE%) of cefepime in liposomes with phosphatidylcholine and cholesterol than with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). The presence of cholesterol and the quantity of egg-yolk phospholipid in the liposome increased the encapsulation percentage. The bactericidal activity against Escherichia coli of cefepime loaded into liposomes with phosphatidylcholine was measured. The inhibitory zone in an agar plate for free cefepime was similar to that obtained for loaded cefepime. The growth-rate constant of E. coli culture was also measured in working conditions. The liposome without any antibiotic exerted no influence in such a rate constant. All obtained results suggest that PC:CH:12NBr liposomes are biocompatible nanocarriers of cefepime that can be used in bacterial infections against Escherichia coli with high inhibitory activity.

2.
Int Microbiol ; 9(2): 125-33, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16835843

ABSTRACT

It has been postulated that nodulation outer proteins (Nops) avoid effective nodulation of Sinorhizobium fredii USDA257 to nodulate with American soybeans. S. fredii HH103 naturally nodulates with both Asiatic (non-commercial) and American (commercial) soybeans. Inactivation of the S. fredii HH103 gene rhcJ, which belongs to the tts (type III secretion) cluster, abolished Nop secretion and decreased its symbiotic capacity with the two varieties of soybeans. S. fredii strains HH103 and USDA257, that only nodulates with Asian soybeans, showed different SDS-PAGE Nop profiles, indicating that these strains secrete different sets of Nops. In coinoculation experiments, the presence of strain USDA257 provoked a clear reduction of the nodulation ability of strain HH103 with the American soybean cultivar Williams. These results suggest that S. fredii Nops can act as either detrimental or beneficial symbiotic factors in a strain-cultivar-dependent manner. Differences in the flavonoid-mediated expression of rhcJ with respect to nodA were also detected. In addition, one of the Nops secreted by strain HH103 was identified as NopA.


Subject(s)
Bacterial Proteins/metabolism , Glycine max/microbiology , Sinorhizobium fredii/physiology , Amino Acid Sequence , Bacterial Proteins/genetics , Gene Silencing , Genes, Bacterial , Molecular Sequence Data , Mutation , Sinorhizobium fredii/genetics , Sinorhizobium fredii/metabolism , Glycine max/growth & development , Symbiosis
3.
Int. microbiol ; 9(2): 125-133, jun. 2006. tab, graf
Article in En | IBECS | ID: ibc-048323

ABSTRACT

It has been postulated that nodulation outer proteins (Nops) avoid effective nodulation of Sinorhizobium fredii USDA257 to nodulate with American soybeans. S. fredii HH103 naturally nodulates with both Asiatic (non-commercial) and American (commercial) soybeans. Inactivation of the S. fredii HH103 gene rhcJ, which belongs to the tts (type III secretion) cluster, abolished Nop secretion and decreased its symbiotic capacity with the two varieties of soybeans. S. fredii strains HH103 and USDA257, that only nodulates with Asian soybeans, showed different SDS-PAGE Nop profiles, indicating that these strains secrete different sets of Nops. In coinoculation experiments, the presence of strain USDA257 provoked a clear reduction of the nodulation ability of strain HH103 with the American soybean cultivar Williams. These results suggest that S. fredii Nops can act as either detrimental or beneficial symbiotic factors in a strain-cultivar-dependent manner. Differences in the flavonoid-mediated expression of rhcJ with respect to nodA were also detected. In addition, one of the Nops secreted by strain HH103 was identified as NopA (AU)


Se ha propuesto que las proteínas externas de nodulación (Nops) impiden la nodulación efectiva de Sinorhizobium fredii USDA257 con las sojas americanas. S. fredii HH103 nodula de forma natural tanto con las sojas asiáticas (no comercializadas) como con las americanas (comercializadas). La inactivación del gen rhcJ de HH103, que pertenece a la agrupación génica tts (secreción de tipo III), anuló la secreción de Nops y redujo la capacidad simbiótica de esta bacteria con las dos variedades de soja. Las cepas HH103 y USDA257 de S. fredii, que sólo nodula sojas asiáticas, mostraron perfiles SDS-PAGE diferentes de Nop, lo cual sugiere que estas cepas podrían secretar distintos conjuntos de Nops. Cuando las cepas USDA257 y HH103 fueron inoculadas conjuntamente, la capacidad de nodulación de esta última cepa con el cultivar americano Williams de soja se redujo significativamente. Estos resultados indican que las Nops secretadas por S. fredii pueden actuar como factores simbióticos tanto positivos como negativos dependiendo de la cepa-cultivar rizobiana. Se detectaron también diferencias entre la expresión mediada por flavonoides del gen rhcJ y del nodA. Además, una de las Nops secretadas por la cepa HH103 fue identificada como NopA (AU)


Subject(s)
Bacterial Proteins , Sinorhizobium fredii/pathogenicity , Symbiosis , Gene Silencing , Genes, Bacterial , Molecular Sequence Data , Mutation , /genetics , Sinorhizobium fredii/genetics , Sinorhizobium fredii/metabolism
4.
Mol Plant Microbe Interact ; 17(6): 676-85, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15195950

ABSTRACT

We have investigated in Sinorhizobium fredii HH103-1 (=HH103 Str(r)) the influence of the nolR gene on the production of three different bacterial symbiotic signals: Nod factors, signal responsive (SR) proteins, and exopolysaccharide (EPS). The presence of multiple copies of nolR (in plasmid pMUS675) repressed the transcription of all the flavonoid-inducible genes analyzed: nodA, nodD1, nolO, nolX, noeL, rhcJ, hesB, and y4pF. Inactivation of nolR (mutant SVQ517) or its overexpression (presence of pMUS675) altered the amount of Nod factors detected. Mutant SVQ517 produced Nod factors carrying N-methyl residues at the nonreducing N-acetyl-glucosamine, which never have been detected in S. fredii HH103. Plasmid pMUS675 increased the amounts of EPS produced by HH103-1 and SVQ517. The flavonoid genistein repressed EPS production of HH103-1 and SVQ517 but the presence of pMUS675 reduced this repression. The presence of plasmid pMUS675 clearly decreased the secretion of SR proteins. Inactivation, or overexpression, of nolR decreased the capacity of HH103 to nodulate Glycine max. However, HH103-1 and SVQ517 carrying plasmid pMUS675 showed enhanced nodulation capacity with Vigna unguiculata. The nolR gene was positively identified in all S. fredii strains investigated, S. xinjiangense CCBAU110, and S. saheli USDA4102. Apparently, S. teranga USDA4101 does not contain this gene.


Subject(s)
Bacterial Proteins/physiology , Repressor Proteins/physiology , Sinorhizobium fredii/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Conserved Sequence , Gene Expression Regulation, Bacterial , Genes, Bacterial , Lipopolysaccharides/biosynthesis , Molecular Sequence Data , Mutation , Plants/microbiology , Polysaccharides, Bacterial/biosynthesis , Repressor Proteins/genetics , Rhizobium/genetics , Signal Transduction , Sinorhizobium fredii/genetics , Sinorhizobium fredii/physiology , Symbiosis
5.
Mol Plant Microbe Interact ; 15(2): 150-9, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11878319

ABSTRACT

Strain SVQ121 is a mutant derivative of Sinorhizobium fredii HH103 carrying a transposon Tn5-lacZ insertion into the nolO-coding region. Sequence analysis of the wild-type gene revealed that it is homologous to that of Rhizobium sp. NGR234, which is involved in the 3 (or 4)-O-carbamoylation of the nonreducing terminus of Nod factors. Downstream of nolO, as in Rhizobium sp. NGR234, the noeI gene responsible for methylation of the fucose moiety of Nod factors was found. SVQ121 Nod factors showed lower levels of methylation into the fucosyl residue than those of HH103-suggesting a polar effect of the transposon insertion into nolO over the noel gene. A noeI HH103 mutant was constructed. This mutant, SVQ503, produced Nod factors devoid of methyl groups, confirming that the S. fredii noeI gene is functional. Neither the nolO nor the noeI mutation affected the ability of HH103 to nodulate several host plants, but both mutations reduced competitiveness to nodulate soybean. The Nod factors produced by strain HH103, like those of other S. fredii isolates, lack carbamoyl residues. By using specific polymerase chain reaction primers, we sequenced the nolO gene of S. fredii strains USDA192, USDA193, USDA257, and 042B(s). All the analyzed strains showed the same -1 frameshift mutation that is present in the HH103 nolO-coding region. From these results, it is concluded that, regardless of their geographical origin, S. fredii strains carry the nolO-coding region but that it is truncated by the same base-pair deletion.


Subject(s)
Bacterial Proteins/genetics , Carboxyl and Carbamoyl Transferases , Frameshift Mutation , Plants/microbiology , Sequence Deletion , Sinorhizobium/genetics , Amino Acid Sequence , Conserved Sequence , Geography , Molecular Sequence Data , Mutagenesis, Insertional , Nitrogen Fixation/genetics , Plant Diseases/microbiology , Sequence Alignment , Sequence Homology, Amino Acid , Sinorhizobium/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...