Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Res ; 71(1): 159-169, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35043650

ABSTRACT

The study investigated the role of alpha2-adrenergic receptors of the caudal raphe region in the sympathetic and cardiovascular responses to the acute intermittent hypercapnia (AIHc). Urethane-anesthetized, vagotomized, mechanically ventilated Sprague-Dawley rats (n=38) were exposed to the AIHc protocol (5×3 min, 15 % CO2+50 % O2) in hyperoxic background (50 % O2). alpha2-adrenergic receptor antagonist-yohimbine was applied intravenously (1 mg/kg, n=9) or microinjected into the caudal raphe region (2 mM, n=12) prior to exposure to AIHc. Control groups of animals received saline intravenously (n=7) or into the caudal raphe region (n=10) prior to exposure to AIHc. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were monitored before exposure to the AIHc protocol (T0), during five hypercapnic episodes (THc1-5) and at 15 min following the end of the last hypercapnic episode (T15). Following intravenous administration of yohimbine, RSNA was significantly greater during THc1-5 and at T15 than in the control group (P<0.05). When yohimbine was microinjected into the caudal raphe region, AIHc elicited greater increases in RSNA during THc1-5 when compared to the controls (THc1: 138.0+/-4.0 % vs. 123.7+/-4.8 %, P=0.032; THc2: 137.1+/-5.0 % vs. 124.1+/-4.5 %, P=0.071; THc3: 143.1+/-6.4 % vs. 122.0±4.8 %, P=0.020; THc4: 146.1+/-6.2 % vs. 120.7+/-5.7 %, P=0.007 and THc5: 143.2+/-7.7 % vs. 119.2+/-7.2 %, P=0.038). During THc1-5, significant decreases in HR from T0 were observed in all groups, while changes in MAP were observed in the group that received yohimbine intravenously. These findings suggest that blockade of the alpha2-adrenegic receptors in the caudal raphe region might have an important role in sympathetic responses to AIHc.


Subject(s)
Hypercapnia , Sympathetic Nervous System , Animals , Blood Pressure/physiology , Heart Rate , Hypercapnia/chemically induced , Raphe Nuclei , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic
2.
J Physiol Pharmacol ; 70(5)2019 Oct.
Article in English | MEDLINE | ID: mdl-32009626

ABSTRACT

Activation of the sympathetic nervous system plays an important role in the pathophysiology of sleep-related breathing disorders. The aim of the present study was to examine the effects of different levels of hypercapnia in the presence of various background oxygen levels on the magnitude of sympathoexcitation, measured by the renal sympathetic nerve activity (RSNA) in the acute intermittent hypercapnia (AIHc) rat model. The study was conducted on 56 urethane-anesthetized, vagotomized and mechanically ventilated Sprague-Dawley rats (n = 7/group). Each experimental group was subjected to a distinct AIHc protocol that varied in the applied levels of hypercapnia and background oxygen. Mean arterial pressure and RSNA were analyzed in 7 experimental time points: baseline, five hypercapnic episodes (each lasting 3 min) and 15 minutes following the last hypercapnic episode. Exposure to severe hypercapnia (FiCO2 = 0.15) evoked an increase in RSNA, which was preserved throughout the protocol, whereas in moderate hypercapnia (FiCO2 = 0.05) groups there was a trend of progressive diminution of RSNA magnitude following the first hypercapnic episode. Exposure to severe hypercapnia elicited significantly greater RSNA response during first hypercapnic episode and it was enhanced during subsequent episodes compared to exposure to moderate hypercapnia. Additionally, hyperoxic2 background (50% O2) blunted the RSNA response to AIHc compared to room air background, both in severe and moderate hypercapnia groups. Mean arterial blood pressure was preserved throughout the experimental protocol in all studied groups. These findings indicate that acute intermittent hypercapnia evokes increased renal sympathetic nerve activity that is dependent on the severity of hypercapnic exposures and the background oxygen level.


Subject(s)
Hyperoxia/physiopathology , Kidney/innervation , Kidney/physiopathology , Sympathetic Nervous System/physiopathology , Animals , Blood Pressure/physiology , Hypercapnia/metabolism , Hypercapnia/physiopathology , Hyperoxia/metabolism , Kidney/metabolism , Male , Oxygen/metabolism , Rats , Rats, Sprague-Dawley , Sympathetic Nervous System/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...