Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Electrophoresis ; 38(11): 1515-1525, 2017 06.
Article in English | MEDLINE | ID: mdl-28211116

ABSTRACT

This paper reports the capture and detection of vaccinia virus particles based on AC dielectrophoresis (DEP) and electrochemical impedance measurements employing an embedded vertically aligned carbon nanofiber (VACNF) nanoelectrode array (NEA) versus a macroscopic indium-tin-oxide (ITO) transparent electrode in a "points-and-lid" configuration. The nano-DEP device was fabricated by bonding two SU-8 covered electrodes patterned using photolithography. The bottom electrode contains a 200 × 200 µm2 active region on a randomly distributed NEA and the top electrode contains a microfluidic channel in SU-8 spin-coated on ITO to guide the flow of the virus solution. The real-time impedance change was measured during DEP capture and validated with fluorescence microscopy measurements. The NEA was able to capture virus particles with a rather low AC voltage (∼8.0 V peak-to-peak) at 1.0 kHz frequency as the particles were passed through the fluidic channel at high flow velocities (up to 8.0 mm/s). A concentration detection limit as low as ∼2.58 × 103 particles/mL was obtained via impedance measurements after only 54 sec of DEP capture. At the low AC frequencies (50.0 Hz or less), the high electric field at the exposed VACNF tips induced electroporation of the DEP-captured virus particles, which was validated by fluorescence emission from the dyes staining lipophilic membrane and internal nucleic acid, respectively. This study suggests the possibility of integration of a fully functional electronic device for rapid, reversible and label-free capture and detection of pathogenic viruses, with a potential of generating electroporation to the captured the virus particles for further biochemical study.


Subject(s)
Electrophoresis/methods , Electroporation/methods , Lab-On-A-Chip Devices , Microarray Analysis , Nanofibers , Vaccinia virus/isolation & purification , Carbon , Computer Simulation , Electric Impedance , Electrodes , Equipment Design/instrumentation , Equipment Design/methods , Fluorescent Dyes , Limit of Detection , Microelectrodes , Microscopy, Fluorescence , Models, Theoretical , Nanotechnology , Tin Compounds/chemistry
2.
Nanoscale ; 7(8): 3726-36, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25641315

ABSTRACT

This work reports a synergistic approach to the concentration, detection and kinetic monitoring of pathogens through the integration of nanostructured dielectrophoresis (DEP) with nanotag-labelled Surface Enhanced Raman Spectroscopy (SERS). A nanoelectrode array made of embedded Vertically Aligned Carbon Nanofibers (VACNFs) at the bottom of a microfluidic chip was used to effectively capture and concentrate nanotag-labelled E. coli DHα5 cells into a 200 µm × 200 µm area on which a Raman laser probe was focused. The SERS nanotags were based on iron oxide-gold (IO-Au) core-shell nanoovals (NOVs) of ∼50 nm size, which were coated with a QSY21 Raman reporter and attached to E. coli through specific immunochemistry. The combination of the greatly enhanced Raman signal by the SERS nanotags and the effective DEP concentration significantly improved the detection limit and speed. The SERS signal was measured with both a confocal Raman microscope and a portable Raman probe during DEP capture, and was fully validated with fluorescence microscopy measurements under all DEP conditions. The SERS measurements were sensitive enough to detect a single bacterium. A concentration detection limit as low as 210 cfu ml(-1) using a portable Raman system was obtained with a DEP capture time of only ∼50 s. These results demonstrate the potential to develop a compact portable system for rapid and highly sensitive detection of specific pathogens. This system is reusable, requires minimum sample preparation, and is amenable to field applications.


Subject(s)
Electrophoresis/instrumentation , Escherichia coli , Nanostructures/chemistry , Spectrum Analysis, Raman , Animals , Carbon/chemistry , Chickens , Equipment Design , Ferric Compounds/chemistry , Gold/chemistry , Immunochemistry , Lab-On-A-Chip Devices , Limit of Detection , Microfluidics/instrumentation , Microscopy, Confocal , Microscopy, Fluorescence , Nanotechnology , Surface Properties , Tin Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...