Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Blood ; 129(3): 333-346, 2017 Jan 19.
Article in English | MEDLINE | ID: mdl-27864294

ABSTRACT

Mantle cell lymphoma (MCL) is a mature B-cell lymphoma characterized by poor clinical outcome. Recent studies revealed the importance of B-cell receptor (BCR) signaling in maintaining MCL survival. However, it remains unclear which role MALT1, an essential component of the CARD11-BCL10-MALT1 complex that links BCR signaling to the NF-κB pathway, plays in the biology of MCL. Here we show that a subset of MCLs is addicted to MALT1, as its inhibition by either RNA or pharmacologic interference induced cytotoxicity both in vitro and in vivo. Gene expression profiling following MALT1 inhibition demonstrated that MALT1 controls an MYC-driven gene expression network predominantly through increasing MYC protein stability. Thus, our analyses identify a previously unappreciated regulatory mechanism of MYC expression. Investigating primary mouse splenocytes, we could demonstrate that MALT1-induced MYC regulation is not restricted to MCL, but represents a common mechanism. MYC itself is pivotal for MCL survival because its downregulation and pharmacologic inhibition induced cytotoxicity in all MCL models. Collectively, these results provide a strong mechanistic rationale to investigate the therapeutic efficacy of targeting the MALT1-MYC axis in MCL patients.


Subject(s)
Caspases/metabolism , Lymphoma, Mantle-Cell/metabolism , Neoplasm Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Antigen, B-Cell/physiology , Animals , Caspases/physiology , Cell Death , Cell Line, Tumor , Cell Survival , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Mice , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , NF-kappa B/metabolism , Neoplasm Proteins/physiology , Signal Transduction
2.
Blood ; 125(1): 124-32, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25359993

ABSTRACT

Anaplastic large cell lymphoma (ALCL) is a distinct entity of T-cell lymphoma that can be divided into 2 subtypes based on the presence of translocations involving the ALK gene (ALK(+) and ALK(-) ALCL). The interferon regulatory factor 4 (IRF4) is known to be highly expressed in both ALK(+) and ALK(-) ALCLs. However, the role of IRF4 in the pathogenesis of these lymphomas remains unclear. Here we show that ALCLs of both subtypes are addicted to IRF4 signaling, as knockdown of IRF4 by RNA interference was toxic to ALCL cell lines in vitro and in ALCL xenograft mouse models in vivo. Gene expression profiling after IRF4 knockdown demonstrated a significant downregulation of a variety of known MYC target genes. Furthermore, our analyses revealed that MYC is a primary target of IRF4, identifying a novel regulatory mechanism of MYC expression and its target gene network in ALCL. MYC, itself, is essential for ALCL survival, as both knockdown of MYC and pharmacologic inhibition of MYC signaling were toxic to ALCL cell lines. Collectively, our results demonstrate that ALCLs are dependent on IRF4 and MYC signaling and that MYC may represent a promising target for future therapies.


Subject(s)
Gene Expression Regulation, Neoplastic , Interferon Regulatory Factors/metabolism , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Cell Line, Tumor , Cell Survival , Female , Gene Expression Profiling , Humans , Lymphoma/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , RNA Interference , Retroviridae/metabolism , Signal Transduction
3.
Blood ; 122(13): 2242-50, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-23869088

ABSTRACT

Constitutive activation of the nuclear factor-κ B (NF-κB) pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Recurrent mutations of NF-κB regulators that cause constitutive activity of this oncogenic pathway have been identified. However, it remains unclear how specific target genes are regulated. We identified the atypical nuclear IκB protein IκB-ζ to be upregulated in ABC compared with germinal center B-cell-like (GCB) DLBCL primary patient samples. Knockdown of IκB-ζ by RNA interference was toxic to ABC but not to GCB DLBCL cell lines. Gene expression profiling after IκB-ζ knockdown demonstrated a significant downregulation of a large number of known NF-κB target genes, indicating an essential role of IκB-ζ in regulating a specific set of NF-κB target genes. To further investigate how IκB-ζ mediates NF-κB activity, we performed immunoprecipitations and detected a physical interaction of IκB-ζ with both p50 and p52 NF-κB subunits, indicating that IκB-ζ interacts with components of both the canonical and the noncanonical NF-κB pathway in ABC DLBCL. Collectively, our data demonstrate that IκB-ζ is essential for nuclear NF-κB activity in ABC DLBCL, and thus might represent a promising molecular target for future therapies.


Subject(s)
Gene Regulatory Networks , Lymphoma, Large B-Cell, Diffuse/metabolism , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Adaptor Proteins, Signal Transducing , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Gene Knockdown Techniques , Humans , I-kappa B Proteins , Immunoprecipitation , Lymphoma, Large B-Cell, Diffuse/genetics , NF-kappa B/genetics , Polymerase Chain Reaction , RNA, Small Interfering , Signal Transduction/physiology , Transcriptome , Transduction, Genetic
4.
Proc Natl Acad Sci U S A ; 110(30): 12420-5, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23840064

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) represents a heterogeneous diagnostic category with distinct molecular subtypes that can be defined by gene expression profiling. However, even within these defined subtypes, heterogeneity prevails. To further elucidate the pathogenesis of these entities, we determined the expression of the tumor suppressor phosphatase and tensin homolog (PTEN) in 248 primary DLBCL patient samples. These analyses revealed that loss of PTEN was detectable in 55% of germinal center B-cell-like (GCB) DLBCLs, whereas this abnormality was found in only 14% of non-GCB DLBCL patient samples. In GCB DLBCL, the PTEN status was inversely correlated with activation of the oncogenic PI3K/protein kinase B (AKT) pathway in both DLBCL cell lines and primary patient samples. Reexpression of PTEN induced cytotoxicity in PTEN-deficient GCB DLBCL cell line models by inhibiting PI3K/AKT signaling, indicating an addiction to this pathway in this subset of GCB DLBCLs. PI3K/AKT inhibition induced down-regulation of the transcription factor MYC. Reexpression of MYC rescued GCB DLBCL cells from PTEN-induced toxicity, identifying a regulatory mechanism of MYC expression in DLBCL. Finally, pharmacologic PI3K inhibition resulted in toxicity selectively in PTEN-deficient GCB DLBCL lines. Collectively, our results indicate that PTEN loss defines a PI3K/AKT-dependent GCB DLBCL subtype that is addicted to PI3K and MYC signaling and suggest that pharmacologic inhibition of PI3K might represent a promising therapeutic approach in these lymphomas.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/metabolism , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Cohort Studies , Humans , Lymphoma, Large B-Cell, Diffuse/enzymology , Lymphoma, Large B-Cell, Diffuse/pathology , Signal Transduction
5.
Arch Pathol Lab Med ; 132(10): 1557-61, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18834209

ABSTRACT

The accumulation of chromosomal aberrations is a characteristic feature of tumor development. However, an understanding of tumorigenesis that assumes that changes in DNA copy number always cause equivalent changes in the corresponding RNA and protein levels is an oversimplification and completely ignores the individual genetic and epigenetic context in which an aberration has to be evaluated. We present a brief introduction to various techniques dedicated to the genome-wide analysis of genetic and epigenetic changes, and illustrate how complementary information derived from these various DNA array-based technologies can lead to a better understanding of the consequences of chromosomal aberrations.


Subject(s)
Epigenesis, Genetic/genetics , Lung Neoplasms/genetics , Chromosome Aberrations , Gene Dosage , Gene Expression Regulation, Neoplastic , Humans , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...