Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 18(13): e202300256, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37199670

ABSTRACT

The selectivity of catalytic materials suitable for oxygen reduction potential of bio-electrochemical systems is very affluent. Therefore, exploring magnetite and static magnetic field as alternative option to promote microbial electron transfer comes in handy. In this study, the application of magnetite-nanoparticles and a static magnetic field on a microbial fuel cell (MFC) in anaerobic digestion was investigated. The experimental set-up included four 1 L biochemical methane potential tests: a) MFC, b) MFC with magnetite-nanoparticles (MFCM), c) MFC with magnetite-nanoparticles and magnet (MFCMM), and d) control. The highest biogas production obtained was 545.2 mL/g VSfed in the MFCMM digester, which was substantially greater than the 117.7 mL/g VSfed of the control. This was accompanied by high contaminant removals for chemical oxygen demand (COD) of 97.3%, total solids (TS) of 97.4%, total suspended solids (TSS) of 88.7%, volatile solids (VS) 96.1%, and color of 70.2%. The electrochemical efficiency analysis revealed greater maximum current density of 12.5 mA/m2 and coulombic efficiency of 94.4% for the MFCMM. Kinetically, the cumulative biogas produced data obtained were well fitted on the modified Gompertz models and the greatest coefficient of determination (R2 =0.990) was obtained in the MFCMM. Therefore, the application of magnetite-nanoparticles and static magnetic field on MFC showed a high potential for bioelectrochemical methane production and contaminant removal for sewage sludge.


Subject(s)
Bioelectric Energy Sources , Magnetite Nanoparticles , Anaerobiosis , Ferrosoferric Oxide , Biofuels , Bioreactors , Sewage , Methane
2.
Microorganisms ; 11(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36985216

ABSTRACT

In this paper, the application of magnetite-nanoparticles and a microbial fuel cell (MFC) was studied on the anaerobic digestion (AD) of sewage sludge. The experimental set-up included six 1 L biochemical methane potential (BMP) tests with different external resistors: (a) 100 Ω, (b) 300 Ω, (c) 500 Ω, (d) 800 Ω, (e) 1000 Ω, and (f) a control with no external resistor. The BMP tests were carried out using digesters with a working volume of 0.8 L fed with 0.5 L substrate, 0.3 L inoculum, and 0.53 g magnetite-nanoparticles. The results suggested that the ultimate biogas generation reached 692.7 mL/g VSfed in the 500 Ω digester, which was substantially greater than the 102.6 mL/g VSfed of the control. The electrochemical efficiency analysis also demonstrated higher coulombic efficiency (81.2%) and maximum power density (30.17 mW/ m2) for the 500 Ω digester. The digester also revealed a higher maximum voltage generation of 0.431 V, which was approximately 12.7 times the 0.034 V of the lowest-performing MFC (100 Ω digester). In terms of contaminants removed, the best-performing digester was the digester with 500 Ω, which reduced contaminants by more than 89% on COD, TS, VS, TSS and color. In terms of cost-benefit analysis, this digester produced the highest annual energy profit (48.22 ZAR/kWh or 3.45 USD/kWh). This infers the application of magnetite-nanoparticles and MFC on the AD of sewage sludge is very promising for biogas production. The digester with an external resistor of 500 Ω showed a high potential for use in bioelectrochemical biogas generation and contaminant removal for sewage sludge.

3.
Molecules ; 28(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36985825

ABSTRACT

A microbial fuel cell (MFC) is a bioelectrochemical system that can be employed for the generation of electrical energy under microbial activity during wastewater treatment practices. The optimization of electrode spacing is perhaps key to enhancing the performance of an MFC. In this study, electrode spacing was evaluated to determine its effect on the performance of MFCs. The experimental work was conducted utilizing batch digesters with electrode spacings of 2.0 cm, 4.0 cm, 6.0 cm, and 8.0 cm. The results demonstrate that the performance of the MFC improved when the electrode spacing increased from 2.0 to 6.0 cm. However, the efficiency decreased after 6.0 cm. The digester with an electrode spacing of 6.0 cm enhanced the efficiency of the MFC, which led to smaller internal resistance and greater biogas production of 662.4 mL/g VSfed. The electrochemical efficiency analysis demonstrated higher coulombic efficiency (68.7%) and electrical conductivity (177.9 µS/cm) for the 6.0 cm, which was evident from the enrichment of electrochemically active microorganisms. With regards to toxic contaminant removal, the same digester also performed well, revealing removals of over 83% for chemical oxygen demand (COD), total solids (TS), total suspended solids (TSS), and volatile solids (VS). Therefore, these results indicate that electrode spacing is a factor affecting the performance of an MFC, with an electrode spacing of 6.0 cm revealing the greatest potential to maximize biogas generation and the degradability of wastewater biochemical matter.


Subject(s)
Bioelectric Energy Sources , Ferrosoferric Oxide , Biofuels , Electricity , Electrodes
4.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902185

ABSTRACT

The interspecies electron transfer (IET) between microbes and archaea is the key to how the anaerobic digestion process performs. However, renewable energy technology that utilizes the application of a bioelectrochemical system together with anaerobic additives such as magnetite-nanoparticles can promote both direct interspecies electron transfer (DIET) as well as indirect interspecies electron transfer (IIET). This has several advantages, including higher removal of toxic pollutants present in municipal wastewater, higher biomass to renewable energy conversion, and greater electrochemical efficiencies. This review explores the synergistic influence of bioelectrochemical systems and anaerobic additives on the anaerobic digestion of complex substrates such as sewage sludge. The review discussions present the mechanisms and limitations of the conventional anaerobic digestion process. In addition, the applicability of additives in syntrophic, metabolic, catalytic, enzymatic, and cation exchange activities of the anaerobic digestion process are highlighted. The synergistic effect of bio-additives and operational factors of the bioelectrochemical system is explored. It is elucidated that a bioelectrochemical system coupled with nanomaterial additives can increase biogas-methane potential compared to anaerobic digestion. Therefore, the prospects of a bioelectrochemical system for wastewater require research attention.


Subject(s)
Bioreactors , Wastewater , Anaerobiosis , Sewage , Archaea , Methane
5.
Molecules ; 27(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35684310

ABSTRACT

This study examined the application of an electromagnetic field to anaerobic digestion by using an electromagnetic system (ES), a microbial electrolysis cell (MEC), and a control with no external force. The experimental work was performed by carrying out biochemical methane potential (BMP) tests using 1 L biodigesters. The bioelectrochemical digesters were supplied with 0.4 V for 30 days at 40 °C. The electromagnetic field of the ES was generated by coiling copper wire to form a solenoid in the BMP system, whereas the MEC consisted of zinc and copper electrodes inside the BMP system. The best performing system was the MEC, with a yield of 292.6 mL CH4/g chemical oxygen demand removed (CODremoved), methane content of 86%, a maximum current density of 23.3 mA/m2, a coulombic efficiency of 110.4%, and an electrical conductivity of 180 µS/cm. Above 75% removal of total suspended solids (TSS), total organic carbon (TOC), phosphate, and ammonia nitrogen (NH3-N) was also recorded. However, a longer exposure (>8 days) to higher magnetic intensity (6.24 mT) on the ES reduced its overall performance. In terms of energy, the MEC produced the greatest annual energy profit (327.0 ZAR/kWh or 23.36 USD/kWh). The application of an electromagnetic field in anaerobic digestion, especially a MEC, has the potential to maximize the methane production and the degradability of the wastewater organic content.


Subject(s)
Bioreactors , Copper , Anaerobiosis , Electrolysis , Electromagnetic Fields , Methane
6.
Bioengineering (Basel) ; 8(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34940351

ABSTRACT

Conventionally, the anaerobic digestion of industrial effluent to biogas constitutes less than 65% methane, which warrants its potential methanation to mitigate carbon dioxide and other anthropogenic gas emissions. The performance of the anaerobic digestion process can be enhanced by improving biochemical activities. The aim of this study was to examine the synergistic effect of the magnetite and bioelectrochemical systems (BES) on anaerobic digestion by comparing four digesters, namely a microbial fuel cell (MFC), microbial electrolysis cell (MEC), MEC with 1 g of magnetite nanoparticles (MECM), and a control digester with only sewage sludge (500 mL) and inoculum (300 mL). The MFC digester was equipped with zinc and copper electrodes including a 100 Ω resistor, whereas the MEC was supplied with 0.4 V on the electrodes. The MECM digester performed better as it improved microbial activity, increased the content of methane (by 43% compared to 41% of the control), and reduced contaminants (carbon oxygen demand, phosphates, colour, turbidity, total suspended solids, and total organic carbon) by more than 81.9%. Current density (jmax = 25.0 mA/m2) and electrical conductivity (275 µS/cm) were also high. The prospects of combining magnetite and bioelectrochemical systems seem very promising as they showed a great possibility for use in bioelectrochemical methane generation and wastewater treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...