Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Type of study
Publication year range
1.
J Chem Ecol ; 29(3): 747-61, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12757331

ABSTRACT

The impact of urea nitrogen fertilization on silverleaf whitefly, Bemisia argentifolii Bellows & Perring, population dynamics was examined in field-grown cotton (Gossypium hirsutum L.). Five urea nitrogen treatments were tested, consisting of soil applications of 0, 112, 168, and 224 kg nitrogen per hectare, and acombined soil-foliar application of 112:17 kg nitrogen per hectare. A positive response was observed between N application rates and the measured levels of nitrate N in petioles from mature cotton leaves. Similarly, a positive response was observed between N application rates and the numbers of adult and immature whiteflies appearing during population peaks. To determine whether these positive responses were related, we measured the levels of dietary N compounds (proteins and free amino acids) that would be available for insect nutrition in cotton petioles at the different N application rates. Sampling dates and N application treatments affected levels of soluble proteins in cotton petioles, and interactions between sampling dates and treatments were significant. Across all sampling dates, the relationship between N application rates and levels of soluble proteins was linear. Sampling dates also affected levels of total and individual free amino acids. Fertilizer treatments only affected levels of total amino acids, aspartate, asparagine, and arginine plus threonine. Levels of aspartate or asparagine and the N application rates were linearly correlated. No significant correlations were observed between levels of dietary N compounds in cotton petioles and numbers of whiteflies, either adults or immatures, on the cotton plants.


Subject(s)
Crops, Agricultural/metabolism , Fertilizers , Gossypium/metabolism , Hemiptera/physiology , Nitrates/pharmacology , Amino Acids/analysis , Amino Acids/drug effects , Amino Acids/metabolism , Animals , Diet , Hemiptera/drug effects , Insect Control , Nitrates/metabolism , Plant Proteins/analysis , Plant Proteins/drug effects , Plant Proteins/metabolism , Soil
2.
Biochem Biophys Res Commun ; 284(2): 335-9, 2001 Jun 08.
Article in English | MEDLINE | ID: mdl-11394882

ABSTRACT

Calorie restriction (CR) delays age-related physiological changes, reduces cancer incidence, and increases maximum life span in mammals. Here we show that CR decreased the expression of many hepatic molecular chaperones and concomitantly increased the rate and efficiency of serum protein secretion. Hepatocytes from calorie-restricted mice secreted twice as much albumin, 63% more alpha1-antitrypsin, and 250% more of the 31.5-kDa protein 2 h after their synthesis. A number of trivial explanations for these results, such as differential rates of protein synthesis and cell leakage during the assay, were eliminated. These novel results suggest that CR may promote the secretion of serum proteins, thereby promoting serum protein turnover. This may reduce the circulating level of damaging, glycoxidated serum proteins.


Subject(s)
Blood Proteins/metabolism , Energy Intake/physiology , Liver/metabolism , Molecular Chaperones/metabolism , Animals , Blotting, Western , Calcium-Binding Proteins/metabolism , Calreticulin , Carrier Proteins/metabolism , Cell Separation , Diet , Electrophoresis, Polyacrylamide Gel , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP , Female , Glycoproteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Isomerases/metabolism , Liver/cytology , Membrane Glycoproteins/metabolism , Mice , Molecular Chaperones/genetics , Protein Disulfide-Isomerases , RNA, Messenger/metabolism , RNA, Transfer, Amino Acyl/metabolism , Ribonucleoproteins/metabolism , Serum Albumin/genetics , Serum Albumin/metabolism , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism
3.
Plant Physiol ; 115(3): 1267-1276, 1997 Nov.
Article in English | MEDLINE | ID: mdl-12223871

ABSTRACT

Exposure of variegated coleus (Coleus blumei Benth.) plants to a saline root-zone environment (60 mM NaCl:12 mM CaCl2) resulted in a significant decline in elongation growth rate over the 30-d experimental period. During the initial 5 to 10 d of exposure, mature source leaves showed strongly diminished rates of photosynthesis, which gradually recovered to close to the control rates by the end of the experiment. In green leaf tissues, starch levels showed the same transient decline and recovery pattern. Low starch levels were accompanied by the appearance of several novel carbohydrates, including high-molecular-weight raffinose family oligosaccharides (RFOs) with a degree of polymerization (DP) of 5 to 8, and an O-methylated inositol (OMI). New enzyme activities, including galactan:galactan galactosyltransferase, for the synthesis of high-DP RFOs and myo-inositol 6-O-methyltransferase for O-methylation of myo-inositol, were induced by salinity stress. Phloem-sap analysis showed that in the stressed condition substantially more sucrose than RFO was exported, as was the OMI. In white sink tissues these phloem sugars were used to synthesize high-DP RFOs but not OMIs. In sink tissues galactan:galactan galactosyltransferase but not myo-inositol 6-O-methyltransferase was induced by salinity stress. Models reflecting the changes in carbohydrate metabolism in source and sink tissues in response to salinity stress are presented.

4.
J Chem Ecol ; 20(3): 691-707, 1994 Mar.
Article in English | MEDLINE | ID: mdl-24242121

ABSTRACT

Cucurbita pepo plants were infected with zucchini yellow mosaic virus or maintained noninfected.Aphis gossypii, which transmits the virus, lived longer and produced more offspring on infected than on noninfected plants. On infected plants, the intrinsic rate of natural increase forA. gossypii increased with time after inoculation. In a similar experiment, concentrations of phloem sap nutrients, including free amino acids, total protein, and sugars from infected and noninfected plants were compared for 37 days after inoculation. Significant differences in levels of individual amino acids from phloem exudate between infected and noninfected plants were found, yet the concentration of total amino acids was not substantially different between infected and noninfected plants. Beginning four days after inoculation, the total protein content of phloem exudate generally was lower in infected plants than noninfected plants. Likewise, the total sugar content of phloem exudate from infected plants was lower than that of noninfected plants beginning nine days after inoculation. In contrast with the results from analyses of phloem exudate, foliage from infected plants had higher levels of almost all amino acids than noninfected foliage beginning nine days after inoculation. Concentrations of individual and total amino acids in infected foliage increased throughout the experimental period. Although no temporal effects were observed in the foliage sugar content for either individual or total sugars, starch content decreased with time in infected plants, while in noninfected plants, starch content remained level.

5.
Plant Physiol ; 99(3): 959-65, 1992 Jul.
Article in English | MEDLINE | ID: mdl-16669025

ABSTRACT

Continuous monitoring of steady-state carbon dioxide exchange rates in mature muskmelon (Cucumis melo L.) leaves showed diurnal patterns of photosynthesis and respiration that were translated into distinct patterns of accumulation and phloem export of soluble sugars and amino acids. Leaf soluble sugar patterns in general followed the pattern of photosynthetic activity observed in the leaf, whereas starch accumulated steadily throughout the light period. Sugar and starch levels declined through the dark phase. Phloem exudate analysis revealed that diurnal levels of the major transport sugars (stachyose and sucrose) in the phloem did not appear to correlate directly with the photosynthetic activity of the leaf but instead were inversely correlated with leaf starch accumulation and degradation. The amino acid pool in leaf tissues remained constant throughout the diurnal period; however, the relative contribution of individual amino acids to the total pool varied with the diurnal photosynthetic and respiratory activity of the leaf. In contrast, the phloem sap amino acid pool size was substantially larger in the light than in the dark, a result primarily due to enhanced export of glutamine, glutamate, and citrulline during the light period. The results indicate that the sugar and amino acid composition of cucurbit phloem sap is not constant but varies throughout the diurnal cycle in response to the metabolic activities of the source leaf.

6.
Plant Physiol ; 99(3): 966-71, 1992 Jul.
Article in English | MEDLINE | ID: mdl-16669026

ABSTRACT

Muskmelon (Cucumis melo L.) plants were exposed to a 10 degrees C chilling treatment for 72 hours, which induced leaf chilling injury symptoms (wilting, appearance of water-soaked areas, necrosis). Chilling caused an accumulation of starch, sucrose, hexoses (glucose and fructose), and certain amino acids (glutamate, aspartate, and citrulline) in source leaf tissues, but no accumulation of stachyose or other galactosyl-oligosaccharides occurred. Chilling also caused a general increase in sugar (stachyose, raffinose, sucrose) and amino acid content of the phloem sap, although rates of phloem transport were apparently reduced. Pretreatment of the leaves with a 20-milligram per liter abscisic acid (ABA) spray before chilling prevented the appearance of chilling injury symptoms. ABA pretreatment had little or no affect on sugar accumulation in leaf tissues but greatly reduced or eliminated the chilling-induced amino acid accumulation. Higher levels of aspartate and particularly of arginine were found in phloem saps from ABA-pretreated plants. The data indicate that changes in leaf metabolism caused by environmental stresses such as chilling may change the composition of cucurbit phloem sap. This raises the possibility that some of the deleterious effects of stress on sink tissues may, in part, be due to alterations in the nature of the assimilate supply.

7.
Planta ; 187(4): 537-41, 1992 Jul.
Article in English | MEDLINE | ID: mdl-24178149

ABSTRACT

Leaf discs obtained from mature leaves of Xerosicyos danguyi were found to contain appreciable levels of stachyose throughout an 8-h nocturnal period during which this plant performs Crassulacean acid metabolism (CAM). In contrast, in mesophyll tissues obtained from paradermal sections of these same leaf discs and which were devoid of vascular tissues, stachyose pools were rapidly depleted during the nocturnal phase. The pattern of this depletion followed closely the depletion pattern observed for starch, indicating that mesophyll stachyose was possibly involved in nocturnal CAM processes and was not necessarily being used for export. Pulse-labelling of intact X. danguyi leaves prior to excision of leaf discs and mesophyll samples also indicated that, while labelled stachyose had turned-over completely in the mesophyll tissues by the end of the nocturnal period, substantial levels of labelled stachyose were always recovered from the leaf discs from which these mesophyll samples were derived. The data indicate the existence of two separate pools of stachyose in the X. danguyi leaf, one a mesophyll pool which turns over rapidly at night and which may be involved to a small extent in nocturnal CAM processes, and the other a pool associated with and possibly synthesized by the vascular tissues and which presumably represents the phloem-transport pool.

8.
Plant Physiol ; 93(2): 617-22, 1990 Jun.
Article in English | MEDLINE | ID: mdl-16667512

ABSTRACT

Mature, variegated leaves of Coleus blumei Benth. contained stachyose and other raffinose series sugars in both green, photosynthetic and white, nonphotosynthetic tissues. However, unlike the green tissues, white tissues had no detectable level of galactinol synthase activity and a low level of sucrose phosphate synthase indicating that stachyose and possibly sucrose present in white tissues may have originated in green tissues. Uptake of exogenously supplied [(14)C]stachyose or [(14)C]sucrose into either tissue type showed conventional kinetic profiles indicating combined operation of linear first-order and saturable systems. Autoradiographs of white discs showed no detectable minor vein labelling with [(14)C]stachyose, but some degree of vein labeling with [(14)C]sucrose. Autoradiographs of green discs showed substantial vein loading with either sugar. In both tissues, p-chloromercuribenzenesulfonic acid had no effect on the linear component of sucrose or stachyose uptake but inhibited the saturable component. Both tissues contained high levels of invertase, sucrose synthase and alpha-galactosidase and extensively metabolized exogenously supplied (14)C-sugars. In green tissues, label from exogenous sugars was recovered as raffinose-series sugars. In white tissues, exogenous sugars were hydrolysed and converted to amino acids and organic acids. The results indicate that variegated Coleus leaves may be useful for studies on both phloem loading and phloem unloading processes in stachyose-transporting species.

9.
Appl Environ Microbiol ; 56(5): 1423-8, 1990 May.
Article in English | MEDLINE | ID: mdl-2339894

ABSTRACT

Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water.


Subject(s)
Chloramines/pharmacology , Chlorine Compounds , Chlorine/pharmacology , Coccidia/drug effects , Cryptosporidium/drug effects , Disinfectants/pharmacology , Oxides/pharmacology , Ozone/pharmacology , Animals , Cryptosporidium/physiology
10.
Plant Physiol ; 87(3): 588-91, 1988 Jul.
Article in English | MEDLINE | ID: mdl-16666190

ABSTRACT

Leaf tissues from Xerosicyos danguyi H. Humb., a succulent member of the Cucurbitaceae, were found to possess both galactinol synthase activity and the capacity for photosynthetic production of stachyose, the phloem transport oligosaccharide common to other nonsucculent cucurbits. The amounts of stachyose isolated from leaf tissues, and the extractable activity of galactinol synthase, were somewhat higher in leaf tissues obtained from plants operating in the Crassulacean acid metabolism (CAM) mode (well watered plants) compared to leaf tissues from plants operating in the CAM-idling mode (water-stressed plants). In contrast, in leaf discs, the photosynthetic incorporation of label into stachyose following pulse labeling with (14)CO(2) was similar for stressed and for nonstressed tissues. Stachyose could be extracted from, and was synthesized photosynthetically by, leaf discs which contained no vascular tissues, indicating that synthesis of stachyose can occur in photosynthetic mesophyll cells of Xerosicyos.

11.
J Parasitol ; 73(4): 702-5, 1987 Aug.
Article in English | MEDLINE | ID: mdl-3625424

ABSTRACT

An existing method for the detection of Cryptosporidium oocysts in water was modified to investigate oocyst prevalence in large volumes of water. Surface waters and sewage effluents were filtered, eluted from the filter, and concentrated using centrifugation. The resultant pellet was then homogenized, sonicated, and placed on a sucrose gradient to separate oocysts from the sediment. The uppermost gradient layer was then examined by immunofluorescence using a labeled monoclonal antibody. Using this technique, average numbers of oocysts detected in raw and treated sewage were 5.18 X 10(3) and 1.30 X 10(3)/L, respectively. Filtered sewage effluents had significantly lower numbers of oocysts (10.0/L). These data show that sand filtration may reduce the concentrations of this parasite in waste waters. Highly variable oocyst numbers were encountered in surface waters. Since Cryptosporidium oocysts are frequently present in environmental waters, they could be responsible for waterborne outbreaks of disease.


Subject(s)
Coccidia/isolation & purification , Cryptosporidium/isolation & purification , Sewage , Water , Animals , Arizona , Fresh Water
12.
Planta ; 171(2): 197-204, 1987 Jun.
Article in English | MEDLINE | ID: mdl-24227326

ABSTRACT

Autoradiographs obtained from discs from mature, peeled Ipomoea tricolor Cav. leaves indicated that a 15-min 2 mM p-chloromercuribenzene sulfonic acid (PCMBS) pretreatment did not prevent the accumulation of (14)CO2-derived (14)C-photosynthate within the minor veins. However, accumulation of (14)C-photosynthate within these veins was almost, or completely prevented by treatment of the leaf discs at pH 9.0. Peeled Ipomoea leaf discs were also used to study the kinetics of exogenously supplied [(14)C]sucrose; influx occurred by the combined operation of a saturable and a first-order kinetic mechanism. Both transport mechanisms were inhibited by a 15-min 2 mM PCMBS pretreatment or by treatment at pH 9.0. An analysis of autoradiographs obtained on leaf discs that had been fed exogenous [(14)C]sucrose, showed that whereas all cells of the leaf took up sucrose at pH 5.0, uptake at pH 9.0 occurred primarily into cells of the minor veins. In contrast with (14)C-photoassimilate experiments, PCMBS pretreatment, at either pH 5.0 or pH 9.0, resulted in a reduction in the radioactivity within the minor veins when the label was supplied exogenously as [(14)C]sucrose. Kinetic experiments conducted with mesophyll cells isolated enzymatically from peeled source-leaf discs indicated that [(14)C]sucrose influx also occurred by a saturable and a first-order kinetic mechanism. Comparative studies between leaf discs and isolated mesophyll cells showed that mesophyll cells could account for 75% of the total uptake occurring into the peeled leaf discs. These results indicate that the effects of PCMBS and alkaline pH on net sucrose uptake by leaf tissues are not exerted solely on phloem tissues, and that some of the effects of these treatments may be attributable to an inhibition of symplasmic transport to the minor veins.

13.
Plant Physiol ; 82(2): 432-42, 1986 Oct.
Article in English | MEDLINE | ID: mdl-16665047

ABSTRACT

A novel method for the delivery of the fluorescent dye Lucifer Yellow CH to the cytosol of a source leaf mesophyll cell was devised which utilized a preencapsulation of the dye in phospholipid vesicles (liposomes). The liposomes were easily injected into the vacuoles of leaf cells of Beta vulgaris or Ipomea tricolor, where fusion with the tonoplast resulted in the release of the dye into the cytosol. Subsequent cell-to-cell movement of the dye was readily followed by fluorescence microscopy. Using this liposome technique symplastic continuity from the the mesophyll to the minor veins of the source leaf of Ipomea tricolor was demonstrated. This agreed with ultrastructural studies which demonstrated the presence of plasmodesmata between all cells from the mesophyll to the minor veins. The symplastic movement of dye from the injected mesophyll cell to the minor veins was unaffected by pretreatment of the leaf tissues with 2 millimolar p-chloromercuribenzenesulfonic acid. Pretreatment of the leaf tissues at alkaline pH (3-[N-morpholino] propanesulfonic acid-KOH, pH 8.0) had no apparent effect on dye movement between adjacent mesophyll cells but inhibited the movement of dye into and along the minor veins. Thus, although there were no apparent barriers to symplastic solute movement in this leaf, symplastic barriers could be imposed by the experimental conditions used.

14.
Plant Physiol ; 76(3): 782-6, 1984 Nov.
Article in English | MEDLINE | ID: mdl-16663924

ABSTRACT

Partitioning and transport of recently fixed photosynthate was examined following (14)CO(2) pulse-labeling of intact, attached leaves of Salvia splendens L. maintained in an atmosphere of 300 microliters per liter CO(2) and 20, 210, or 500 milliliters per liter O(2). Under conditions of increasing O(2) (210, 500 milliliters per liter), a smaller percentage of the recently fixed (14)C in the leaf was allocated to starch, whereas a greater percentage of the fixed (14)C appeared in amino acids, particularly serine. The increase in (14)C in amino acids was reflected in material exported from source leaves. A higher percentage of (14)C in serine, glycine, and glutamate was recovered in petiole extracts when source leaves were maintained under elevated O(2) levels. Although pool sizes of these amino acids were increased in both the leaves and petioles with increasing photorespiratory activity, no significant changes in either (14)C distribution or concentration of transport sugars (i.e. stachyose, sucrose, verbascose) were observed. The data indicate that, in addition to being recycled intracellularly into Calvin cycle intermediates, amino acids produced during photorespiration may also serve as transport metabolites, allowing the mobilization of both carbon and nitrogen from the leaf under conditions of limited photosynthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...