Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Pharmaceutics ; 16(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38399262

ABSTRACT

Developing successful nanomedicine hinges on regulating nanoparticle surface interactions within biological systems, particularly in intravenous nanotherapeutics. We harnessed the surface interactions of gold nanoparticles (AuNPs) with serum proteins, incorporating a γ-globulin (γG) hard surface corona and chemically conjugating Doxorubicin to create an innovative hybrid anticancer nanobioconjugate, Dox-γG-AuNPs. γG (with an isoelectric point of ~7.2) enhances cellular uptake and exhibits pH-sensitive behaviour, favouring targeted cancer cell drug delivery. In cell line studies, Dox-γG-AuNPs demonstrated a 10-fold higher cytotoxic potency compared to equivalent doxorubicin concentrations, with drug release favoured at pH 5.5 due to the γ-globulin corona's inherent pH sensitivity. This bioinspired approach presents a novel strategy for designing hybrid anticancer therapeutics. Our study also explored the intricacies of the p53-mediated ROS pathway's role in regulating cell fate, including apoptosis and necrosis, in response to these treatments. The pathway's delicate balance of ROS emerged as a critical determinant, warranting further investigation to elucidate its mechanisms and implications. Overall, leveraging the robust γ-globulin protein corona on AuNPs enhances biostability in harsh serum conditions, augments anticancer potential within pH-sensitive environments, and opens promising avenues for bioinspired drug delivery and the design of novel anticancer hybrids with precise targeting capabilities.

2.
Biosens Bioelectron ; 246: 115830, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38039729

ABSTRACT

The limit of detection (LOD), speed, and cost of crucial COVID-19 diagnostic tools, including lateral flow assays (LFA), enzyme-linked immunosorbent assays (ELISA), and polymerase chain reactions (PCR), have all improved because of the financial and governmental support for the epidemic. The most notable improvement in overall efficiency among them has been seen with PCR. Its significance for human health increased during the COVID-19 pandemic, when it emerged as the commonly used approach for identifying the virus. However, because of problems with speed, complexity, and expense, PCR deployment in point-of-care settings continues to be difficult. Microfluidic platforms offer a promising solution by enabling the development of smaller, more affordable, and faster PCR systems. In this review, we delve into the engineering challenges associated with the advancement of high-speed microfluidic PCR equipment. We introduce criteria that facilitate the evaluation and comparison of factors such as speed, LOD, cycling efficiency, and multiplexing capacity, considering sample volume, fluidics, PCR reactor geometry and materials, as well as heating/cooling methods. We also provide a comprehensive list of commercially available PCR devices and conclude with projections and a discussion regarding the current obstacles that need to be addressed in order to progress further in this field.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , COVID-19/diagnosis , Pandemics , Polymerase Chain Reaction , Microfluidics , COVID-19 Testing
3.
Microsyst Nanoeng ; 9: 132, 2023.
Article in English | MEDLINE | ID: mdl-37854723

ABSTRACT

To produce a three-dimensional micro/nanocarbon structure, a manufacturing design technique for sub-10 nm carbon fiber arrays on three-dimensional carbon micropillars has been developed; the method involves initiating electrostatic jetting, forming submicron-to-nanoscale PAN-based fibers, and maximizing the shrinkage from polyacrylonitrile (PAN)-based fibers to carbon fibers. Nanoforming and nanodepositing methods for polyacrylonitrile-based jet fibers as precursors of carbon fibers are proposed for the processing design of electrostatic jet initiation and for the forming design of submicron-to-nanoscale PAN-based fibers by establishing and analyzing mathematical models that include the diameter and tensile stress values of jet fibers and the electric field intensity values on the surfaces of carbon micropillars. In accordance with these methods, an array of jet fibers with diameters of ~80 nm is experimentally formed based on the thinning of the electrospinning fluid on top of a dispensing needle, the poking of drum into an electrospinning droplet, and the controlling of the needle-drum distance. When converting thin PAN-based jet fibers to carbon fibers, a pyrolysis method consisting of the suspension of jet nanofibers between carbon micropillars, the bond between the fibers and the surface of the carbon micropillar, and the control of micropillar spacing, stabilization temperature, and carbonation rate is presented to maximize the shrinkage from PAN-based fibers to carbon fibers and to form sub-10 nm carbon fiber arrays between three-dimensional carbon micropillars. The manufacturing design of a three-dimensional micro/nanocarbon structure can produce thin PAN-based jet nanofibers and nanofiber arrays aligned on micropillar surfaces, obtain shrinkage levels reaching 96% and incorporate sub-10 nm carbon fibers into three-dimensional carbon micropillars; these actions provide new research opportunities for correlated three-dimensional micro/nanocarbon structures that have not previously been technically possible.

4.
Sci Rep ; 13(1): 18296, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880256

ABSTRACT

Troponin is the American College of Cardiology and American Heart Association preferred biomarker for diagnosing acute myocardial infarction (MI). We provide a modeling framework for high sensitivity cardiac Troponin I (hs-cTnI) detection in chromatographic immunoassays (flow displacement mode) with an analytical limit of detection, i.e., LOD < 10 ng/L. We show that each of the various control parameters exert a significant influence over the design requirements to reach the desired LOD. Additionally, the design implications in a multiplexed fluidic network, as in the case of Simple Plex™ Ella instrument, are significantly affected by the choice of the number of channels or partitions in the network. We also provide an upgrade on the existing LOD equation to evaluate the necessary minimum volume to detect a particular concentration by considering the effects of stochastics and directly incorporating the target number of copies in each of the partitions in case of multiplexed networks. Even though a special case of cTnI has been considered in this study, the model and analysis are analyte agnostic and may be applied to a wide class of chromatographic immunoassays. We believe that this contribution will lead to more efficient designing of the immunochromatographic assays.


Subject(s)
Myocardial Infarction , Troponin I , Humans , Myocardial Infarction/diagnosis , Biomarkers , Immunoassay , Troponin T
5.
Micromachines (Basel) ; 14(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37630070

ABSTRACT

Limit of detection (LOD), speed, and cost for some of the most important diagnostic tools, i.e., lateral flow assays (LFA), enzyme-linked immunosorbent assays (ELISA), and polymerase chain reaction (PCR), all benefited from both the financial and regulatory support brought about by the pandemic. From those three, PCR has gained the most in overall performance. However, implementing PCR in point of care (POC) settings remains challenging because of its stringent requirements for a low LOD, multiplexing, accuracy, selectivity, robustness, and cost. Moreover, from a clinical point of view, it has become very desirable to attain an overall sample-to-answer time (t) of 10 min or less. Based on those POC requirements, we introduce three parameters to guide the design towards the next generation of PCR reactors: the overall sample-to-answer time (t); lambda (λ), a measure that sets the minimum number of copies required per reactor volume; and gamma (γ), the system's thermal efficiency. These three parameters control the necessary sample volume, the number of reactors that are feasible (for multiplexing), the type of fluidics, the PCR reactor shape, the thermal conductivity, the diffusivity of the materials used, and the type of heating and cooling systems employed. Then, as an illustration, we carry out a numerical simulation of temperature changes in a PCR device, discuss the leading commercial and RT-qPCR contenders under development, and suggest approaches to achieve the PCR reactor for RT-qPCR of the future.

6.
Nanoscale ; 15(40): 16277-16286, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37650749

ABSTRACT

Biopolymer microgels present many opportunities in biomedicine and tissue engineering. To understand their in vivo behavior in therapeutic interventions, long-term monitoring is critical, which is usually achieved by incorporating fluorescent materials within the hydrogel matrix. Current research is limited due to issues concerning the biocompatibility and instability of the conventional fluorescent species, which also tend to adversely affect the bio-functionality of the hydrogels. Here, we introduce a microfluidic-based approach to generate nitrogen-functionalized graphene quantum dot (NGQD) incorporated gelatin methacryloyl (GelMA) hydrogel microspheres, capable of long-term monitoring while preserving or enhancing the other favorable features of 3D cell encapsulation. A multilayer droplet-based microfluidic device was designed and fabricated to make monodisperse NGQD-loaded GelMA hydrogel microspheres encapsulating skeletal muscle cells (C2C12). Control over the sizes of microspheres could be achieved by tuning the flow rates in the microfluidic device. Skeletal muscle cells encapsulated in these microgels exhibited high cell viability from day 1 (82.9 ± 6.50%) to day 10 (92.1 ± 3.90%). The NGQD-loaded GelMA microgels encapsulating the cells demonstrated higher metabolic activity compared to the GelMA microgels. Presence of sarcomeric α-actin was verified by immunofluorescence staining on day 10. A fluorescence signal was observed from the NGQD-loaded microgels during the entire period of the study. The investigation reveals the advantages of integrating NGQDs in microgels for non-invasive imaging and monitoring of cell-laden microspheres and presents new opportunities for future therapeutic applications.


Subject(s)
Graphite , Microgels , Quantum Dots , Tissue Engineering , Hydrogels , Gelatin , Methacrylates
7.
Sensors (Basel) ; 23(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36772748

ABSTRACT

Numerous immunoassays have been successfully integrated on disc-based centrifugal platforms (CDs) over the last 20 years. These CD devices can be used as portable point-of-care (POC) platforms with sample-to-answer capabilities where bodily fluids such as whole blood can be used as samples directly without pre-processing. In order to use whole blood as a sample on CDs, centrifugation is used to separate red blood cells from plasma on CDs. There are several techniques for using specific fluidic patterns in the centrifugal fluidic network, such as reciprocation, that enhances the sensitivity of the immunoassays, including those using microarray antigen membranes. Present work demonstrates, for the first time, simultaneous integration of blood plasma separation (BPS) and reciprocation on the CD platform. The integrated design allows plasma that is separated from the red blood cells in a sedimentation chamber to flow into the reciprocation chamber via a narrow connecting channel of 0.5 mm × 0.5 mm cross-section. Due to the small cross-section of the connecting channel, there is no inflow of the red blood cell into the reciprocation chamber during subsequent fluidic operations of the CD. While no inflow of the red blood cells into the reciprocation chamber was observed, the conditions of 20 g jerk acceleration were also simulated in ANSYS finite element analysis software, and it was found that the CD design that was used is capable of retaining red blood cells in the sedimentation chamber. Experimentally, the isolation of red blood cells in the sedimentation chamber was confirmed using the ImageJ image processor to detect the visible color-based separation of the plasma from the blood. A fluorescent analyte testing on the bio-sensing array of the presented novel integrated design and on the standard reciprocation design CD was conducted for 7 min of reciprocation in each case. The test analyte was Europium Streptavidin Polystyrene analyte (10-3 mg/mL) and the microarray consisted of Biotin bovine serum albumin (BSA) dots. The fluorescent signals for the standard and integrated designs were nearly identical (within the margin of error) for the first several minutes of reciprocation, but the fluorescent signal for the integrated design was significantly higher when the reciprocation time was increased to 7 min.


Subject(s)
Microfluidic Analytical Techniques , Microfluidic Analytical Techniques/methods , Centrifugation/methods , Immunoassay/methods , Plasma
8.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36500794

ABSTRACT

Micro and nano interdigitated electrode array (µ/n-IDEA) configurations are prominent working electrodes in the fabrication of electrochemical sensors/biosensors, as their design benefits sensor achievement. This paper reviews µ/n-IDEA as working electrodes in four-electrode electrochemical sensors in terms of two-dimensional (2D) planar IDEA and three-dimensional (3D) IDEA configurations using carbon or metal as the starting materials. In this regard, the enhancement of IDEAs-based biosensors focuses on controlling the width and gap measurements between the adjacent fingers and increases the IDEA's height. Several distinctive methods used to expand the surface area of 3D IDEAs, such as a unique 3D IDEA design, integration of mesh, microchannel, vertically aligned carbon nanotubes (VACNT), and nanoparticles, are demonstrated and discussed. More notably, the conventional four-electrode system, consisting of reference and counter electrodes will be compared to the highly novel two-electrode system that adopts IDEA's shape. Compared to the 2D planar IDEA, the expansion of the surface area in 3D IDEAs demonstrated significant changes in the performance of electrochemical sensors. Furthermore, the challenges faced by current IDEAs-based electrochemical biosensors and their potential solutions for future directions are presented herein.

9.
Sensors (Basel) ; 22(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36433550

ABSTRACT

Centrifugal microfluidic platforms (CDs) have opened new possibilities for inexpensive point-of-care (POC) diagnostics. They are now widely used in applications requiring polymerase chain reaction steps, blood plasma separation, serial dilutions, and many other diagnostic processes. CD microfluidic devices allow a variety of complex processes to transfer onto the small disc platform that previously were carried out by individual expensive laboratory equipment requiring trained personnel. The portability, ease of operation, integration, and robustness of the CD fluidic platforms requires simple, reliable, and scalable designs to control the flow of fluids. Valves play a vital role in opening/closing of microfluidic channels to enable a precise control of the flow of fluids on a centrifugal platform. Valving systems are also critical in isolating chambers from the rest of a fluidic network at required times, in effectively directing the reagents to the target location, in serial dilutions, and in integration of multiple other processes on a single CD. In this paper, we review the various available fluidic valving systems, discuss their working principles, and evaluate their compatibility with CD fluidic platforms. We categorize the presented valving systems into either "active", "passive", or "hybrid"-based on their actuation mechanism that can be mechanical, thermal, hydrophobic/hydrophilic, solubility-based, phase-change, and others. Important topics such as their actuation mechanism, governing physics, variability of performance, necessary disc spin rate for valve actuation, valve response time, and other parameters are discussed. The applicability of some types of valves for specialized functions such as reagent storage, flow control, and other applications is summarized.


Subject(s)
Body Fluids , Microfluidics , Lab-On-A-Chip Devices , Catheters , Plasma
10.
Biosens Bioelectron ; 214: 114381, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35820257

ABSTRACT

Many advanced microfluidic Lab-on-disc (LOD) devices require an on-board power supply for powering active components. LODs with an on-board electrical power supply are called electrified-LODs (eLODs) and are the subject of the present review. This survey comprises two main parts. First, we discuss the different means of delivering electrical energy to a spinning disc including slip-ring, wireless power transmission, and on-board power supply. In the second part, we focus on utilizing electrical power on eLODs for three electrokinetic microfluidic processes: electrophoresis, electroosmotic flow, and dielectrophoresis. Electrokinetic phenomena enable propulsion, separation, and manipulation of different fluids and various types of microparticles/cells. We summarize the theoretical and experimental results for all three electrokinetic phenomena enacted on centrifugal platforms. While extensive numerical modeling and experimental research are available for electrokinetics on stationary platforms, there is a noticeable lack of development in this area when executed on rotating platforms. The review concludes by comparing the strengths and weaknesses of different electrokinetic techniques implemented on centrifugal platforms, and additionally, the most promising applications of electrokinetic-assisted eLOD devices are singled out.


Subject(s)
Biosensing Techniques , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Electroosmosis , Electrophoresis , Microfluidic Analytical Techniques/standards , Microfluidic Analytical Techniques/trends
11.
Micromachines (Basel) ; 13(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35744496

ABSTRACT

The fluidic barrier in centrifugal microfluidic platforms is a newly introduced concept for making multiple emulsions and microparticles. In this study, we focused on particle generation application to better characterize this method. Because the phenomenon is too fast to be captured experimentally, we employ theoretical models to show how liquid polymeric droplets pass a fluidic barrier before crosslinking. We explain how secondary flows evolve and mix the fluids within the droplets. From an experimental point of view, the effect of different parameters, such as the barrier length, source channel width, and rotational speed, on the particles' size and aspect ratio are investigated. It is demonstrated that the barrier length does not affect the particle's ultimate velocity. Unlike conventional air gaps, the barrier length does not significantly affect the aspect ratio of the produced microparticles. Eventually, we broaden this concept to two source fluids and study the importance of source channel geometry, barrier length, and rotational speed in generating two-fluid droplets.

12.
Lab Chip ; 22(14): 2695-2706, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35737382

ABSTRACT

Heterogeneous immunoassays (HI) are an invaluable tool for biomarker detection and remain an ideal candidate for microfluidic point-of-care diagnostics. However, automating and controlling sustained fluid flow from benchtop to microfluidics for the HI reaction during the extended sample incubation step, remains difficult to implement; this leads to challenges for assay integration and assay result interpretation. To address these issues, we investigated the liquid reciprocation process on a microfluidic centrifugal disc (CD) to generate continuous, bidirectional fluid flow using only a rotating motor. Large volumetric flow rates (µL s-1) through the HI reaction chamber were sustained for extended durations (up to 1 h). The CD liquid reciprocation operating behavior was characterized experimentally and simulated to determine fluid flow shear rates through our HI reaction chamber. We demonstrated the continuous CD liquid reciprocation for target molecule incubation for a microarray HI and that higher fluid shear rates negatively influenced our fluorescence intensity. We highlight the importance of proper fluid flow considerations when integrating HIs with microfluidics.


Subject(s)
COVID-19 , Microfluidic Analytical Techniques , Biological Assay , Humans , Immunoassay , Microfluidics
13.
Biomicrofluidics ; 16(3): 034105, 2022 May.
Article in English | MEDLINE | ID: mdl-35607410

ABSTRACT

Nowadays, centrifugal microfluidic platforms are finding wider acceptance for implementing point-of-care assays due to the simplicity of the controls, the versatility of the fluidic operations, and the ability to create a self-enclosed system, thus minimizing the risk of contamination for either the sample or surroundings. Despite these advantages, one of the inherent weaknesses of CD microfluidics is that all the sequential fluidic chambers and channels must be positioned radially since the centrifugal force acts from the center of the disk outward. Implementation of schemes where the liquid can be rerouted from the disk periphery to the disk center would significantly increase the utility of CD platforms and increase the rational utilization of the real estate on the disk. The present study outlines a novel utilization of elastic membranes covering fluidic chambers to implement inward pumping whereby the fluid is returned from the disk periphery to the center of the disk. When the disk revolves at an angular velocity of 3600 rpm, liquid enters the chamber covered by the elastic membrane. This membrane is deflected upward by liquid, storing energy like a compressed spring. When the angular velocity of the disk is reduced to 180 rpm and thus the centrifugal force is diminished, the elastic membrane pushes the liquid from the chamber inward, closer to the center of the disk. There are two channels leading from the elastic membrane-covered reservoir-one channel has a higher fluidic resistance and the other (wider) has a lower fluidic resistance. The geometry of these two channels determines the fluidic path inward (toward the center of the disk). Most of the liquid travels through the recirculating channel with lower resistance. We demonstrated an inward pumping efficiency in the range of 78%-89%. Elastic membrane-driven inward pumping was demonstrated for the application of enhanced fluid mixing. Additionally, to demonstrate the utility of the proposed pumping mechanism for multi-step assays on the disk, we implemented and tested a disk design that combines plasma separation and inward pumping.

14.
Micromachines (Basel) ; 13(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35208427

ABSTRACT

Compact disc (CD)-based centrifugal microfluidics is an increasingly popular choice for academic and commercial applications as it enables a portable platform for biological and chemical assays. By rationally designing microfluidic conduits and programming the disc's rotational speeds and accelerations, one can reliably control propulsion, metering, and valving operations. Valves that either stop fluid flow or allow it to proceed are critical components of a CD platform. Among the valves on a CD, wax valves that liquify at elevated temperatures to open channels and that solidify at room temperature to close them have been previously implemented on CD platforms. However, typical wax valves on the CD fluidic platforms can be actuated only once (to open or to close) and require complex fabrication steps. Here, we present two new multiple-use wax valve designs, driven by capillary or magnetic forces. One wax valve design utilizes a combination of capillary-driven flow of molten wax and centrifugal force to toggle between open and closed configurations. The phase change of the wax is enabled by heat application (e.g., a 500-mW laser). The second wax valve design employs a magnet to move a molten ferroparticle-laden wax in and out of a channel to enable reversible operation. A multi-phase numerical simulation study of the capillary-driven wax valve was carried out and compared with experimental results. The capillary wax valve parameters including response time, angle made by the sidewall of the wax reservoir with the direction of a valve channel, wax solidification time, minimum spin rate of the CD for opening a valve, and the time for melting a wax plug are measured and analyzed theoretically. Additionally, the motion of the molten wax in a valve channel is compared to its theoretical capillary advance with respect to time and are found to be within 18.75% of the error margin.

15.
Microsyst Nanoeng ; 8: 15, 2022.
Article in English | MEDLINE | ID: mdl-35178246

ABSTRACT

Crystalline carbon nanowire arrays were fabricated taking advantage of near-field electrospinning and stress decyanation. A novel fabrication method for carbon nanowires with radii ranging from ~2.15 µm down to ~25 nm was developed based on implementing nitrogen pretreatment on the silica surface and then aligning polymer nanofibers during near-field electrospinning at an ultralow voltage. Stress decyanation was implemented by subsequently pyrolyzing a polymer nanofiber array on the silica surface at 1000 °C for 1 h in an N2 atmosphere, thus obtaining a crystalline carbon nanowire array with a nanostructured surface. Various crystalline nanostructures were fabricated on the nanowire surface, and their electrochemical performance was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Crystalline carbon wires with diameters ranging from micrometers to submicrometers displayed carbon nanoelectrode-like behavior with their CV curve having a sigmoidal shape. A highly crystalline carbon nanowire array showed distinct behavior, having a monotonically increasing straight line as its CV curve and a semicircular EIS spectrum; these results demonstrated its ultrastable current, as determined by electron transfer. Furthermore, nanocrystalline-structured carbon wires with diameters of ~305 nm displayed at least a fourfold higher peak current density during CV (4000 mA/m2) than highly crystalline carbon nanowires with diameters of ~100 nm and porous microwires with diameters of ~4.3 µm.

16.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35159643

ABSTRACT

In this work, carbon dots were created from activated and non-activated pyrolytic carbon black obtained from waste tires, which were then chemically oxidized with HNO3. The effects caused to the carbon dot properties were analyzed in detail through characterization techniques such as ion chromatography; UV-visible, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy; ζ potential; transmission electron microscopy (TEM); and spectrofluorometry. The presence of functional groups on the surface of all carbon dots was revealed by UV-visible, FTIR, XPS, and Raman spectra. The higher oxidation degrees of carbon dots from activated precursors compared to those from nonactivated precursors resulted in differences in photoluminescence (PL) properties such as bathochromic shift, lower intensity, and excitation-dependent behavior. The results demonstrate that the use of an activating agent in the recovery of pyrolytic carbon black resulted in carbon dots with different PL properties. In addition, a dialysis methodology is proposed to overcome purification obstacles, finding that 360 h were required to obtain pure carbon dots synthesized by a chemical oxidation method.

17.
Sci Total Environ ; 813: 152556, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34952082

ABSTRACT

Waterborne diseases cause millions of deaths worldwide, especially in developing communities. The monitoring and rapid detection of microbial pathogens in water is critical for public health protection. This study reports the development of a proof-of-concept portable pathogen analysis system (PPAS) that can detect bacteria in water with the potential application in a point-of-sample collection setting. A centrifugal microfluidic platform is adopted to integrate bacterial cell lysis in water samples, nucleic acid extraction, and reagent mixing with a droplet digital loop mediated isothermal amplification assay for bacteria quantification onto a single centrifugal disc (CD). Coupled with a portable "CD Driver" capable of automating the assay steps, the CD functions as a single step bacterial detection "lab" without the need to transfer samples from vial-to-vial as in a traditional laboratory. The prototype system can detect Enterococcus faecalis, a common fecal indicator bacterium, in water samples with a single touch of a start button within 1 h and having total hands-on-time being less than 5 min. An add-on bacterial concentration cup prefilled with absorbent polymer beads was designed to integrate with the pathogen CD to improve the downstream quantification sensitivity. All reagents and amplified products are contained within the single-use disc, reducing the opportunity of cross contamination of other samples by the amplification products. This proof-of-concept PPAS lays the foundation for field testing devices in areas needing more accessible water quality monitoring tools and are at higher risk for being exposed to contaminated waters.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Nucleic Acid Amplification Techniques , Water Quality
18.
Nanoscale ; 13(38): 16094-16103, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34632994

ABSTRACT

In the development of glassy carbon fiber toward graphene fiber, highly crystalline carbon wires have attracted attention. More importantly, a charge cannot be accommodated at the surface of highly oriented pyrolytic graphite as it would be in a metal. In this work, we demonstrate that enhancing the decyanation reaction rate and reducing the nanowire diameter to below the crystallite size (≲50 nm) greatly contribute to the microstructure transformation of carbon from low crystalline glassy carbon to crystalline micro-structure. Using silica surfaces to limit the shrinkage of electrospun nanofibers during oxidation and carbonization, enhances the conversion of alcohol groups to normal carbonyl groups on the surface of the carbon wires derived from PAN fibers deposited with near field electrospinning (NFES). Cyclic voltammograms (CVs) on the carbon nanowires reveal that the enhancement of alcohol groups to normal carbonyl groups slows down the rapid electron transfer on glassy carbon electrodes. Using electrochemical impedance spectroscopy (EIS), we also establish that the electron transfer on the surface of highly crystalline carbon nanowires almost completely depends on the presence of oxygen groups. The highly crystalline structure of nanoscale carbon wires with a large amount of normal carbonyl groups exhibits an ultra-low electron transfer rate (less than 1.2 µm s-1), showing the ability to make the charges reside on the highly crystalline carbon nanowires. The straight line in CV allows for EIS measurements at high alternating current voltages, improving upon the non-linearity of traditional electrochemical cells by overcoming the stochastic errors and the lower signal-to-noise ratio for ultra-sensitive biomolecule detection (≤25 mV). The latter could spur the development of a new generation of electrochemical cells and biomedical signal measurements.

19.
Micromachines (Basel) ; 12(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34577668

ABSTRACT

In this study, we carried out a heterogeneous cytoplasmic lipid content screening of Neochloris oleoabundans microalgae by dielectrophoresis (DEP), using castellated glassy carbon microelectrodes in a PDMS microchannel. For this purpose, microalgae were cultured in nitrogen-replete (N+) and nitrogen-deplete (N-) suspensions to promote low and high cytoplasmic lipid production in cells, respectively. Experiments were carried out over a wide frequency window (100 kHz-30 MHz) at a fixed amplitude of 7 VPP. The results showed a statistically significant difference between the dielectrophoretic behavior of N+ and N- cells at low frequencies (100-800 kHz), whereas a weak response was observed for mid- and high frequencies (1-30 MHz). Additionally, a finite element analysis using a 3D model was conducted to determine the dielectrophoretic trapping zones across the electrode gaps. These results suggest that low-cost glassy carbon is a reliable material for microalgae classification-between low and high cytoplasmic lipid content-through DEP, providing a fast and straightforward mechanism.

20.
Micromachines (Basel) ; 12(9)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34577739

ABSTRACT

It is generally accepted that inducing molecular alignment in a polymer precursor via mechanical stresses influences its graphitization during pyrolysis. However, our understanding of how variations of the imposed mechanics can influence pyrolytic carbon microstructure and functionality is inadequate. Developing such insight is consequential for different aspects of carbon MEMS manufacturing and applicability, as pyrolytic carbons are the main building blocks of MEMS devices. Herein, we study the outcomes of contrasting routes of stress-induced graphitization by providing a comparative analysis of the effects of compressive stress versus standard tensile treatment of PAN-based carbon precursors. The results of different materials characterizations (including scanning electron microscopy, Raman and X-ray photoelectron spectroscopies, as well as high-resolution transmission electron microscopy) reveal that while subjecting precursor molecules to both types of mechanical stresses will induce graphitization in the resulting pyrolytic carbon, this effect is more pronounced in the case of compressive stress. We also evaluated the mechanical behavior of three carbon types, namely compression-induced (CIPC), tension-induced (TIPC), and untreated pyrolytic carbon (PC) by Dynamic Mechanical Analysis (DMA) of carbon samples in their as-synthesized mat format. Using DMA, the elastic modulus, ultimate tensile strength, and ductility of CIPC and TIPC films are determined and compared with untreated pyrolytic carbon. Both stress-induced carbons exhibit enhanced stiffness and strength properties over untreated carbons. The compression-induced films reveal remarkably larger mechanical enhancement with the elastic modulus 26 times higher and tensile strength 2.85 times higher for CIPC compared to untreated pyrolytic carbon. However, these improvements come at the expense of lowered ductility for compression-treated carbon, while tension-treated carbon does not show any loss of ductility. The results provided by this report point to the ways that the carbon MEMS industry can improve and revise the current standard strategies for manufacturing and implementing carbon-based micro-devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...