Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10773, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730262

ABSTRACT

The developing brain is vulnerable to maternal bacterial and viral infections which induce strong inflammatory responses in the mother that are mimicked in the offspring brain, resulting in irreversible neurodevelopmental defects, and associated cognitive and behavioural impairments. In contrast, infection during pregnancy and lactation with the immunoregulatory murine intestinal nematode, Heligmosomoides bakeri, upregulates expression of genes associated with long-term potentiation (LTP) of synaptic networks in the brain of neonatal uninfected offspring, and enhances spatial memory in uninfected juvenile offspring. As the hippocampus is involved in spatial navigation and sensitive to immune events during development, here we assessed hippocampal gene expression, LTP, and neuroimmunity in 3-week-old uninfected offspring born to H. bakeri infected mothers. Further, as maternal immunity shapes the developing immune system, we assessed the impact of maternal H. bakeri infection on the ability of offspring to resist direct infection. In response to maternal infection, we found an enhanced propensity to induce LTP at Schaffer collateral synapses, consistent with RNA-seq data indicating accelerated development of glutamatergic synapses in uninfected offspring, relative to those from uninfected mothers. Hippocampal RNA-seq analysis of offspring of infected mothers revealed increased expression of genes associated with neurogenesis, gliogenesis, and myelination. Furthermore, maternal infection improved resistance to direct infection of H. bakeri in offspring, correlated with transfer of parasite-specific IgG1 to their serum. Hippocampal immunohistochemistry and gene expression suggest Th2/Treg biased neuroimmunity in offspring, recapitulating peripheral immunoregulation of H. bakeri infected mothers. These findings indicate maternal H. bakeri infection during pregnancy and lactation alters peripheral and neural immunity in uninfected offspring, in a manner that accelerates neural maturation to promote hippocampal LTP, and upregulates the expression of genes associated with neurogenesis, gliogenesis, and myelination.


Subject(s)
Hippocampus , Neuronal Plasticity , Animals , Female , Hippocampus/metabolism , Hippocampus/parasitology , Pregnancy , Mice , Nematode Infections/immunology , Nematode Infections/parasitology , Long-Term Potentiation , Prenatal Exposure Delayed Effects/immunology , Strongylida Infections/immunology , Strongylida Infections/parasitology , Male , Neuroimmunomodulation
2.
MethodsX ; 11: 102256, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37383626

ABSTRACT

A widespread protocol to seal coverslips on a microscope slide for histological analysis utilizes air-drying nail polish. Nail polish is applied to glue the coverslip in place and prevent the leakage of mounting media. Air drying takes time, typically overnight, and generates an unpleasant smell. Equally familiar is the waiting game, lightly touching the polish to check its dryness, while being careful not to disrupt the coverslip, often leaving sticky spots on one's fingertips. An advantageous solution to these drawbacks is to use gel nail polish, which rapidly hardens and dries by being cured under a LED/UV lamp. We show that UV-cured gel nail polish provides a rapid, stable, scentless, nontoxic, and cost-effective solution for coverslip sealing. Cured in 10 s, with no impact on fluorescent labels, gel polish hardens completely and the slide is ready to be imaged. Furthermore, we show that gel nail polish can be used to generate 3D ridges and structures to support coverslipping thicker samples. Gel nail polish is purposefully unscented, and the brands used in our study employ environmentally conscious, vegan, and cruelty-free ingredients. UV-cured gel nail polish is a cost-effective alternative that presents an easy, accessible, and inexpensive solution to traditional coverslip sealing methods.•Inexpensive method to rapidly seal coverslips onto a microscope slide to immediately image samples for Histological analyses.•Utilizes LED/UV light to cure gel nail polish in 10 s without bleaching fluorophores.•Can be used to generate 3D ridges and structures to support coverslipping thicker samples.

3.
Article in English | MEDLINE | ID: mdl-31396073

ABSTRACT

The numbers and strengths of synapses in the brain change throughout development, and even into adulthood, as synaptic inputs are added, eliminated, and refined in response to ongoing neural activity. A number of experimental techniques can assess these changes, including single-cell electrophysiological recording which offers measurements of synaptic inputs with high temporal resolution. Coupled with electrical stimulation, photoactivatable opsins, and caged compounds, to facilitate fine spatiotemporal control over release of neurotransmitters, electrophysiological recordings allow for precise dissection of presynaptic and postsynaptic mechanisms of action. Here, we discuss the strengths and pitfalls of various techniques commonly used to analyze synapses, including miniature excitatory/inhibitory (E/I) postsynaptic currents, evoked release, and optogenetic stimulation. Together, these techniques can provide multiple lines of convergent evidence to generate meaningful insight into the emergence of circuit connectivity and maturation. A full understanding of potential caveats and alternative explanations for findings is essential to avoid data misinterpretation.

SELECTION OF CITATIONS
SEARCH DETAIL
...