Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(23): e2319499121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814867

ABSTRACT

Plants and animals detect biomolecules termed microbe-associated molecular patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multicopy MAMPs on immune induction is unknown. Here, we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy, and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple cold shock proteins, and 46% carry a nonimmunogenic form. We uncovered a mechanism for immune evasion, intrabacterial antagonism, where a nonimmunogenic cold shock protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.


Subject(s)
Arabidopsis , Epitopes , Solanum lycopersicum , Epitopes/immunology , Solanum lycopersicum/immunology , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Arabidopsis/immunology , Arabidopsis/genetics , Genome, Bacterial , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Immunity/genetics , Plant Immunity/immunology , Peptide Elongation Factor Tu/genetics , Peptide Elongation Factor Tu/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Bacteria/immunology , Bacteria/genetics , Cold Shock Proteins and Peptides/genetics , Cold Shock Proteins and Peptides/immunology , Cold Shock Proteins and Peptides/metabolism
2.
bioRxiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37790530

ABSTRACT

Plants and animals detect biomolecules termed Microbe-Associated Molecular Patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multi-copy MAMPs on immune induction is unknown. Here we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple Cold Shock Proteins and 46% carry a non-immunogenic form. We uncovered a new mechanism for immune evasion, intrabacterial antagonism, where a non-immunogenic Cold Shock Protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.

SELECTION OF CITATIONS
SEARCH DETAIL
...