Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Strength Cond Res ; 24(11): 2933-43, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20881505

ABSTRACT

The purpose of this article was to investigate the relation between anthropometric and physiological variables to linear bat swing velocity (BV) of 2 groups of high-school baseball players before and after completing a 12-week periodized resistance exercise program. Participants were randomly assigned to 1 of 2 training groups using a stratified sampling technique. Group 1 (n = 24) and group 2 (n = 25) both performed a stepwise periodized resistance exercise program and took 100 swings a day, 3 d·wk-1, for 12 weeks with their normal game bat. Group 2 performed additional rotational and full-body medicine ball exercises 3 d·wk-1 for 12 weeks. Fourteen variables were measured or calculated before and after 12 weeks of training. Anthropometric and physiological variables tested were height, body mass, percent body fat, lean body mass (LBM), dominant torso rotational strength (DTRS) and nondominant torso rotational strength (NDTRS), sequential hip-torso-arm rotational strength measured by a medicine ball hitter's throw (MBHT), estimated 1 repetition maximum parallel squat (PS) and bench press (BP), vertical jump (VJ), estimated peak power, angular hip velocity (AHV), and angular shoulder velocity (ASV). The baseball-specific skill of linear BV was also measured. Statistical analysis indicated a significant moderately high positive relationship (p ≤ 0.05) between prelinear BV and pre-NDTRS for group 1, pre-LBM, DTRS, NDTRS, peak power, and ASV for group 2; moderate positive relationship between prelinear BV and preheight, LBM, DTRS, peak power, BP, PS, and ASV for group 1, preheight, body mass, MBHT, BP, and PS for group 2. Significantly high positive relationships were indicated between postlinear BV and post-NDTRS for group 1, post-DTRS and NDTRS for group 2; moderately high positive relationships between postlinear BV and post-LBM, DTRS, peak power, BP, and PS for group 1, postheight, LBM, VJ, peak power for group 2; moderate positive relationships between postlinear BV and postheight, body mass, MBHT, and VJ for group 1, postbody mass, MBHT, BP, PS, and ASV for group 2. Significantly low positive relationships were indicated between prelinear BV and prebody mass, MBHT, and VJ for group 1, pre-VJ and AHV for group 2; postlinear BV and post-AHV for group 2. These data show that significant relationships do exist between height, body mass, LBM, rotational power, rotational strength, lower body power, upper and lower body strength, AHV, and ASV to linear BV of high-school baseball players. Strength coaches may want to consider using this information when designing a resistance training program for high-school baseball players. Those recruiting or scouting baseball players may want to use this information to further develop ways of identifying talented players. However, one should be cautious when interpreting this information when designing strength training programs for high-school baseball players to increase linear BV.


Subject(s)
Athletic Performance/physiology , Baseball/physiology , Physical Fitness/physiology , Adipose Tissue/physiology , Adolescent , Body Height/physiology , Body Mass Index , Humans , Male , Muscle Strength/physiology , Resistance Training/methods , Skinfold Thickness
2.
J Strength Cond Res ; 21(4): 1117-25, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18076221

ABSTRACT

This investigation examined the effect of torso rotational strength on angular hip (AHV), angular shoulder (ASV), linear bat-end (BEV), and hand velocities (HV) and 3 repetition maximum (RM) torso rotational and sequential hip-torso-arm rotational strength (medicine ball hitter's throw) in high school baseball players (age 15.4 +/- 1.2 y). Participants were randomly assigned to 1 of 2 training groups. Group 1 (n = 24) and group 2 (n = 25) both performed a stepwise periodized resistance exercise program and took 100 swings a day, 3 days a week, for 12 weeks with their normal game bat. Group 2 performed additional rotational and full-body medicine ball exercises 3 days a week for 12 weeks. A 3RM parallel squat and bench press were measured at 0 and after 4, 8, and 12 weeks. Participants were pre- and posttested for 3RM dominant and nondominant torso rotational strength and medicine ball hitter's throw. Angular hip velocities, ASV, BEV, and HV were recorded pre- and posttraining by a motion capture system that identified and digitally processed reflective markers attached to each participant's bat and body. Groups 1 and 2 increased (p < or = 0.05) BEV (3.6 and 6.4%), HV (2.6 and 3.6%), 3RM dominant (10.5 and 17.1%) and nondominant (10.2 and 18.3%) torso rotational strength, and medicine ball hitter's throw (3.0 and 10.6%) after 12 weeks. Group 2 increased AHV (6.8%) and ASV (8.8%). Group 2 showed greater improvements in BEV, AHV, ASV, 3RM dominant and nondominant torso rotational strength, and medicine ball hitter's throw than group 1. Groups 1 and 2 increased predicted 1RM parallel squat (29.7 and 26.7%) and bench press (17.2 and 16.7%) strength after 12 weeks. These data indicate that performing additional rotational medicine ball exercises 2 days a week for 12 weeks statistically improves baseball performance variables.


Subject(s)
Abdominal Muscles/physiology , Athletic Performance/physiology , Baseball/physiology , Hip/physiology , Muscle Strength/physiology , Shoulder/physiology , Adolescent , Biomechanical Phenomena , Humans , Male , Physical Education and Training/methods , Rotation , Sports Equipment , Treatment Outcome , Weight Lifting/physiology
3.
J Strength Cond Res ; 20(1): 231-40, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16503687

ABSTRACT

This study examined the effects of 12 weeks of wrist and forearm training on linear bat-end velocity (BV), center of percussion velocity (CV), hand velocity (HV), and time to ball contact of high school baseball players. Forty-three baseball players were randomly assigned by a stratified sampling technique to 1 of 2 training groups. Group 1 (n = 23) and group 2 (n = 20) performed the same full-body resistance exercises while training 3 days a week for 12 weeks according to a stepwise periodized model. Group 2 also performed wrist and forearm exercises 3 days a week for 12 weeks. Wrist and forearm strength were measured pre- and posttraining. Linear BV, CV, HV, and time to ball contact were recorded pre- and posttraining by a motion-capture system. A 3 repetition maximum (RM) parallel squat and bench press were measured at baseline and after 4, 8, and 12 weeks of training. Both groups showed statistically significant increases (p < or = 0.01) in linear BV, CV, and HV (m.s(-1) +/- SD) after 12 weeks of training; however, there were no differences between the 2 groups. Both groups statistically increased wrist and forearm strength (p < or = 0.05). Group 2 had statistically greater increases (p < or = 0.05) in 10 of 12 wrist and forearm strength measures than did group 1. Both groups made statistically significant increases in predicted 1RM parallel squat and bench press after 4, 8, and 12 weeks of training; however, there were no differences between groups. These data indicate that a 12-week stepwise periodized training program can significantly increase wrist and forearm strength, linear BV, CV, and HV among high school baseball players. However, increased wrist and forearm strength did not contribute to further increases in linear BV, CV, or HV.


Subject(s)
Baseball/physiology , Forearm/physiology , Physical Education and Training/methods , Wrist/physiology , Adolescent , Hand Strength/physiology , Humans , Male , Muscle, Skeletal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...