Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Rep ; 14(1): 10751, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730088

ABSTRACT

Type III collagen gene expression is upregulated in the synovium of patients with rheumatoid arthritis (RA) presenting the fibroid phenotype. The soluble type III collagen formation biomarker, PRO-C3, is known to measure fibrogenesis in fibrotic diseases. In this exploratory study, we aimed to investigate the association between fibrogenesis (PRO-C3) and the disease- and treatment response in patients with RA. We measured PRO-C3 in subsets of two clinical trials assessing the effect of the anti-interleukin-6 (IL-6) receptor treatment tocilizumab (TCZ) as monotherapy or polytherapy with methotrexate. PRO-C3 levels had weak or very weak correlations with the clinical parameters (Spearman's). However, when the patients were divided into Disease Activity Score-28 groups characterized by the erythrocyte sedimentation rate (DAS28-ESR), there was a statistical difference between the PRO-C3 levels of the different groups (p < 0.05). To determine the response in relation to PRO-C3, a cut-off based on PRO-C3 levels and patients in remission (DAS28-ESR ≤ 2.6) was identified. This showed that a reduction in PRO-C3 after treatment initiation was associated with decreased DAS28-ESR and a higher response rate in patients with low PRO-C3 levels than in those with high PRO-C3 levels. This indicates that a fibrotic component affects the responsiveness of patients.


Subject(s)
Antibodies, Monoclonal, Humanized , Antirheumatic Agents , Arthritis, Rheumatoid , Receptors, Interleukin-6 , Humans , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Female , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/antagonists & inhibitors , Male , Middle Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Antirheumatic Agents/therapeutic use , Methotrexate/therapeutic use , Phenotype , Biomarkers , Adult , Aged , Treatment Outcome
2.
Arthritis Res Ther ; 25(1): 157, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37626399

ABSTRACT

OBJECTIVE: To investigate if extracellular matrix (ECM) blood-based biomarkers reflect the pharmacodynamic effect and response to TNF-α inhibitor therapy (adalimumab, ADA), in patients with axial spondyloarthritis (axSpA). METHODS: We investigated ECM biomarkers in two randomized, double-blind, placebo-controlled trials of axSpA patients (DANISH and ASIM, n = 52 and n = 49, respectively) receiving ADA 40 mg or placebo every other week for 12 and 6 weeks, respectively, and thereafter ADA to week 48. Serum concentrations of degraded type I (C1M), II (C2M, T2CM), III (C3M), IV (C4M), VI (C6M), type X (C10C) collagen; metabolite of C-reactive protein (CRPM), prolargin (PROM), citrullinated vimentin (VICM), calprotectin (CPa9-HNE); and formation of type II (PRO­C2), III (PRO­C3), and VI (PRO­C6) turnover of type IV collagen (PRO-C4) were measured at baseline and weeks 6 or 12, 24, and 48. The pharmacodynamic effect and treatment response to ADA was evaluated by linear mixed models, and correlations between biomarkers and clinical scores were assessed by Spearman's correlation. RESULTS: C1M, C3M, C4M, C6M, CRP, PRO-C4, and CPa9-HNE levels declined after 6 or 12 weeks in patients receiving ADA compared to placebo (all p < 0.05). Patients with AS Disease Activity Score C-reactive protein (ASDAS CRP) major improvement and/or clinically important improvement had significantly higher C1M, C3M, C4M, C6M, and PRO-C4 levels than patients with no/low improvement at baseline (all p < 0.05). Baseline levels of biomarkers showed weak to moderate correlations with ASDAS and structural damage scores. CONCLUSION: ECM metabolites showed a pharmacodynamic effect and were associated with ASDAS response during TNF-α inhibitor treatment in patients with axSpA.


Subject(s)
Axial Spondyloarthritis , C-Reactive Protein , Humans , Adalimumab/therapeutic use , Tumor Necrosis Factor-alpha , Randomized Controlled Trials as Topic , Biomarkers , Complement C4 , Extracellular Matrix , Tumor Necrosis Factor Inhibitors
3.
Sci Rep ; 13(1): 9411, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296166

ABSTRACT

Systemic Sclerosis (SSc) hallmark is skin fibrosis, but up to 80% of the patients have fibrotic involvement in the pulmonary system. Antifibrotic drugs which have failed in a general SSc population have now been approved in patients with SSc-associated interstitial lung disease (ILD). This indicates that the fibrotic progression and regulation of fibroblasts likely depend on local factors specific to the tissue type. This study investigated the difference between dermal and pulmonary fibroblasts in a fibrotic setting, mimicking the extracellular matrix. Primary healthy fibroblasts were grown in a crowded environment and stimulated with TGF-ß1 and PDGF-AB. The viability, morphology, migration capacity, extracellular matrix formation, and gene expression were assessed: TGF-ß1 only increased the viability in the dermal fibroblasts. PDGF-AB increased the migration capacity of dermal fibroblasts while the pulmonary fibroblasts fully migrated. The morphology of the fibroblasts was different without stimulation. TGF-ß1 increased the formation of type III collagen in pulmonary fibroblasts, while PDGF-AB increased it in dermal fibroblasts. The gene expression trend of type VI collagen was the opposite after PDGF-AB stimulation. The fibroblasts exhibit different response profiles to TGF-ß1 and PDGF-AB; this suggests that drivers of fibrosis are tissue-dependent, which needs to be considered in drug development.


Subject(s)
Scleroderma, Systemic , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Cells, Cultured , Fibrosis , Lung/pathology , Scleroderma, Systemic/metabolism , Fibroblasts/metabolism , Skin/metabolism
4.
Arthritis Res Ther ; 24(1): 152, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739562

ABSTRACT

BACKGROUND: Axial spondyloarthritis (axSpA) is a common chronic inflammatory disease, associated with extracellular matrix (ECM) remodeling of the cartilage, bone, and connective tissues. The primary symptom of axSpA is back pain, caused by inflammation. However, there is a medical need to truly identify patients with axSpA from other subjects with buttock or low back pain attributable to other reasons. We aimed to investigate circulating biomarkers of ECM/inflammation (MMP-degraded type I (C1M), II (C2M, T2CM), III (C3M), IV (C4M), VI (C6M), and X (C10C, COL10NC) collagens, CRPM, PROM and VICM) and ECM formation of type II (PRO-C2), III (PRO-C3), IV (PRO-C4), and VI (PRO-C6) collagens as potential biomarkers to identify patients with axSpA. METHODS: We measured biomarkers from a cross-sectional study with 204 participants by enzyme-linked immunosorbent assay (ELISA). The study included axSpA patients (N = 41), women with postpartum buttock/pelvic pain (N = 46), disc herniation (N = 25), and a group of healthy subjects (including women without postpartum pelvic pain (N = 14), subjects with various types of physical strain (cleaning staff (N = 26) long-distance runners (N = 23)), and healthy men (N = 29)). Differences between the groups were calculated by ANCOVA and AUC, while Spearman's correlations were performed with ECM biomarkers and clinical scores. RESULTS: Patients with axSpA expressed significantly higher levels of C1M, C4M, and VICM (p < 0.05-p < 0.0001) compared to all the non-axSpA control groups. Further, C6M and PRO-C4 were significantly higher in patients with axSpA (both p < 0.0001) compared to women with postpartum pelvic pain and healthy subjects, whereas PRO-C3 was significantly lower compared to healthy subjects (p = 0.01). The best ECM common biomarker to differentiate between axSpA and the non-axSpA control groups was PRO-C4 (AUC ≥ 0.75; specificity ≥ 0.79, sensitivity = 0.65). Mild correlations were observed between collagen turnover and inflammation biomarkers and CRP and MRI (ρ ≥ 0.3; p < 0.05-p < 0.001). CONCLUSIONS: Biomarkers of type I, IV, and VI collagen and biomarkers of inflammation showed an altered turnover in patients with axSpA compared with the non-axSpA control groups. Such biomarkers may be useful in combination with MRI or independently to separate patients with axSpA from other back pain conditions.


Subject(s)
Axial Spondyloarthritis , Extracellular Matrix Proteins , Back Pain , Biomarkers , Collagen/metabolism , Complement C3 , Complement C4 , Cross-Sectional Studies , Female , Humans , Inflammation , Male , Pelvic Pain , Postpartum Period
5.
Food Funct ; 12(7): 2938-2949, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33710204

ABSTRACT

The aim of the study was to implement a gastric digestion step using recombinant human gastric lipase (rHGL) in an in vitro pediatric gastro-intestinal digestion model to achieve a physiologically relevant gastric contribution to total gastro-intestinal lipid digestion. A commercial infant formula (NAN Comfort stage 1 (NAN1)) with 3.4% lipid and an in-lab prepared oil-in-water emulsion, emulsified with soy phosphatidylcholine (SPCemul), with 3.5% lipid (oil-blend containing Akonino NS, MEG-3 and ARASCO oils) were subjected to in vitro gastro-intestinal digestion. To achieve a physiologically relevant level of gastric digestion, 50 min of in vitro gastric digestion, using either 0, 3.75 or 7.5 TBU mL-1 rHGL, was followed by 90 min of in vitro intestinal digestion, using either 0 or 26.5 TBU mL-1 pancreatic triglyceride lipase (PTL) from porcine pancreatin. The digestion of the substrates was assessed using titration-based quantification supported by HPLC-ELSD analysis. In vitro gastric digestion of NAN1 and SPCemul with either 3.75 or 7.5 TBU mL-1 rHGL contributed with 10-27% of the total gastro-intestinal digestion, corresponding to the reported contribution in human infants. At the end of the gastro-intestinal digestion (t = 140 min), the combined lipolytic effect of rHGL and PTL was additive during digestion of SPCemul, but not for the digestion of NAN1, as all lipase activity combinations resulted in a similar degree of NAN1 digestion. The effect of gastric digestion with rHGL on total digestion therefore appeared to be substrate dependent. To conclude, a gastric digestion step using rHGL resulting in physiologically relevant gastric contribution to the observed gastro-intestinal digestion was successfully implemented into an in vitro pediatric gastro-intestinal digestion model.


Subject(s)
Digestion/drug effects , Infant Food , Lipase/pharmacology , Pancreatin/pharmacology , Humans , Infant , Infant, Newborn
SELECTION OF CITATIONS
SEARCH DETAIL
...