Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
JCI Insight ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743491

ABSTRACT

Juvenile Dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I interferon response and autoantibodies. Treatment options are limited due to incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of JDM patients at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment towards an immature naive state as a hallmark of JDM at diagnosis. Furthermore, we find that these changes in B cells are paralleled by T cell signatures suggestive of Th2-mediated inflammation that persist despite disease quiescence. We applied network analysis to reveal that hyperactivation of the type I interferon response in all immune populations is coordinated with previously masked cell states including dysfunctional protein processing in CD4+ T cells and regulation of cell death programming in NK, CD8+ T cells and gdT cells. Together, these findings unveil the coordinated immune dysregulation underpinning JDM and provide insight into strategies for restoring balance in immune function.

2.
Nat Cell Biol ; 25(10): 1506-1519, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37783795

ABSTRACT

Brain metastases represent an important clinical problem for patients with small-cell lung cancer (SCLC). However, the mechanisms underlying SCLC growth in the brain remain poorly understood. Here, using intracranial injections in mice and assembloids between SCLC aggregates and human cortical organoids in culture, we found that SCLC cells recruit reactive astrocytes to the tumour microenvironment. This crosstalk between SCLC cells and astrocytes drives the induction of gene expression programmes that are similar to those found during early brain development in neurons and astrocytes. Mechanistically, the brain development factor Reelin, secreted by SCLC cells, recruits astrocytes to brain metastases. These astrocytes in turn promote SCLC growth by secreting neuronal pro-survival factors such as SERPINE1. Thus, SCLC brain metastases grow by co-opting mechanisms involved in reciprocal neuron-astrocyte interactions during brain development. Targeting such developmental programmes activated in this cancer ecosystem may help prevent and treat brain metastases.


Subject(s)
Brain Neoplasms , Lung Neoplasms , Humans , Animals , Mice , Astrocytes/pathology , Lung Neoplasms/metabolism , Ecosystem , Brain Neoplasms/metabolism , Brain/metabolism , Tumor Microenvironment
3.
Cancer Discov ; 11(2): 240-244, 2021 02.
Article in English | MEDLINE | ID: mdl-33318034

ABSTRACT

Small cell lung cancer (SCLC) is an aggressive disease with dismal survival rates and limited therapeutic options. SCLC development is strongly associated with exposure to tobacco carcinogens. However, additional genetic and environmental risk factors that contribute to SCLC pathogenesis are beginning to emerge. Here, we specifically assess disparities pertaining to SCLC in Black populations. In contrast to non-small cell lung cancer, preliminary data suggest that Black individuals may actually be at a lower risk of developing SCLC relative to white individuals. This difference remains unexplained but urgently needs to be verified in larger data sets, because it could provide important new insights and approaches to understanding this recalcitrant tumor. Importantly, little biological information exists on SCLC in Black individuals, and few patient-derived preclinical SCLC models from diverse ancestries are available in the laboratory. Unfortunately, we note strikingly low numbers of Black participants in clinical trials testing new treatments for SCLC. Evidence further indicates that care for patients with SCLC may vary between communities with a large fraction of Black patients and those without. Together, these observations underscore the need to better investigate genetic, environmental, and socioeconomic factors associated with SCLC development, preclinical research, clinical care, and outcomes.


Subject(s)
Biomedical Research , Health Inequities , Lung Neoplasms/drug therapy , Small Cell Lung Carcinoma/drug therapy , Black People , Drug Evaluation, Preclinical , Humans , Lung Neoplasms/ethnology , Medical Oncology , Small Cell Lung Carcinoma/ethnology
4.
Nat Cancer ; 1(11): 1082-1096, 2020 11.
Article in English | MEDLINE | ID: mdl-34085047

ABSTRACT

Understanding the intricacies of lethal prostate cancer poses specific challenges due to difficulties in accurate modeling of metastasis in vivo. Here we show that NPK EYFP mice (for Nkx3.1 CreERT2/+ ; Pten flox/flox ; Kras LSL-G12D/+ ; R26R-CAG-LSL-EYFP/+) develop prostate cancer with a high penetrance of metastasis to bone, thereby enabling detection and tracking of bone metastasis in vivo and ex vivo. Transcriptomic and whole-exome analyses of bone metastasis from these mice revealed distinct molecular profiles conserved between human and mouse and specific patterns of subclonal branching from the primary tumor. Integrating bulk and single-cell transcriptomic data from mouse and human datasets with functional studies in vivo unravels a unique MYC/RAS co-activation signature associated with prostate cancer metastasis. Finally, we identify a gene signature with prognostic value for time to metastasis and predictive of treatment response in human patients undergoing androgen receptor therapy across clinical cohorts, thus uncovering conserved mechanisms of metastasis with potential translational significance.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Animals , Bone Neoplasms/genetics , Castration , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Prostatic Neoplasms/genetics , Transcription Factors/genetics
5.
Cancer Discov ; 9(3): 436-451, 2019 03.
Article in English | MEDLINE | ID: mdl-30567843

ABSTRACT

The plant homeodomain 6 gene (PHF6) is frequently mutated in human T-cell acute lymphoblastic leukemia (T-ALL); however, its specific functional role in leukemia development remains to be established. Here, we show that loss of PHF6 is an early mutational event in leukemia transformation. Mechanistically, genetic inactivation of Phf6 in the hematopoietic system enhances hematopoietic stem cell (HSC) long-term self-renewal and hematopoietic recovery after chemotherapy by rendering Phf6 knockout HSCs more quiescent and less prone to stress-induced activation. Consistent with a leukemia-initiating tumor suppressor role, inactivation of Phf6 in hematopoietic progenitors lowers the threshold for the development of NOTCH1-induced T-ALL. Moreover, loss of Phf6 in leukemia lymphoblasts activates a leukemia stem cell transcriptional program and drives enhanced T-ALL leukemia-initiating cell activity. These results implicate Phf6 in the control of HSC homeostasis and long-term self-renewal and support a role for PHF6 loss as a driver of leukemia-initiating cell activity in T-ALL. SIGNIFICANCE: Phf6 controls HSC homeostasis, leukemia initiation, and T-ALL leukemia-initiating cell self-renewal. These results substantiate a role for PHF6 mutations as early events and drivers of leukemia stem cell activity in the pathogenesis of T-ALL.This article is highlighted in the In This Issue feature, p. 305.


Subject(s)
Cell Self Renewal , Cell Transformation, Neoplastic/pathology , Hematopoietic Stem Cells/pathology , Neoplastic Stem Cells/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Repressor Proteins/metabolism , Animals , Cell Transformation, Neoplastic/metabolism , Female , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Mutation , Neoplastic Stem Cells/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Repressor Proteins/genetics , Tumor Cells, Cultured
6.
Nature ; 553(7689): 511-514, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29342136

ABSTRACT

Relapsed acute lymphoblastic leukaemia (ALL) is associated with resistance to chemotherapy and poor prognosis. Gain-of-function mutations in the 5'-nucleotidase, cytosolic II (NT5C2) gene induce resistance to 6-mercaptopurine and are selectively present in relapsed ALL. Yet, the mechanisms involved in NT5C2 mutation-driven clonal evolution during the initiation of leukaemia, disease progression and relapse remain unknown. Here we use a conditional-and-inducible leukaemia model to demonstrate that expression of NT5C2(R367Q), a highly prevalent relapsed-ALL NT5C2 mutation, induces resistance to chemotherapy with 6-mercaptopurine at the cost of impaired leukaemia cell growth and leukaemia-initiating cell activity. The loss-of-fitness phenotype of NT5C2+/R367Q mutant cells is associated with excess export of purines to the extracellular space and depletion of the intracellular purine-nucleotide pool. Consequently, blocking guanosine synthesis by inhibition of inosine-5'-monophosphate dehydrogenase (IMPDH) induced increased cytotoxicity against NT5C2-mutant leukaemia lymphoblasts. These results identify the fitness cost of NT5C2 mutation and resistance to chemotherapy as key evolutionary drivers that shape clonal evolution in relapsed ALL and support a role for IMPDH inhibition in the treatment of ALL.


Subject(s)
5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Clonal Evolution , Drug Resistance, Neoplasm/genetics , Mutation/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Animals , Cell Proliferation , Disease Models, Animal , Female , Gain of Function Mutation/genetics , Guanosine/biosynthesis , HEK293 Cells , Humans , IMP Dehydrogenase/antagonists & inhibitors , IMP Dehydrogenase/metabolism , Male , Mercaptopurine/pharmacology , Mercaptopurine/therapeutic use , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Purines/metabolism , Receptor, Notch1/metabolism , Recurrence , Xenograft Model Antitumor Assays
7.
NPJ Genom Med ; 2: 29, 2017.
Article in English | MEDLINE | ID: mdl-29263839

ABSTRACT

Cancer is caused by germline and somatic mutations, which can share biological features such as amino acid change. However, integrated germline and somatic analysis remains uncommon. We present a framework that uses machine learning to learn features of recurrent somatic mutations to (1) predict somatic variants from tumor-only samples and (2) identify somatic-like germline variants for integrated analysis of tumor-normal DNA. Using data from 1769 patients from seven cancer types (bladder, glioblastoma, low-grade glioma, lung, melanoma, stomach, and pediatric glioma), we show that "somatic-like" germline variants are enriched for autosomal-dominant cancer-predisposition genes (p < 4.35 × 10-15), including TP53. Our framework identifies germline and somatic nonsense variants in BRCA2 and other Fanconi anemia genes in 11% (11/100) of bladder cancer cases, suggesting a potential genetic predisposition in these patients. The bladder carcinoma patients with Fanconi anemia nonsense variants display a BRCA-deficiency somatic mutation signature, suggesting treatment targeted to DNA repair.

8.
Mol Cell ; 68(2): 414-430.e8, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29053959

ABSTRACT

To ensure the completion of DNA replication and maintenance of genome integrity, DNA repair factors protect stalled replication forks upon replication stress. Previous studies have identified a critical role for the tumor suppressors BRCA1 and BRCA2 in preventing the degradation of nascent DNA by the MRE11 nuclease after replication stress. Here we show that depletion of SMARCAL1, a SNF2-family DNA translocase that remodels stalled forks, restores replication fork stability and reduces the formation of replication stress-induced DNA breaks and chromosomal aberrations in BRCA1/2-deficient cells. In addition to SMARCAL1, other SNF2-family fork remodelers, including ZRANB3 and HLTF, cause nascent DNA degradation and genomic instability in BRCA1/2-deficient cells upon replication stress. Our observations indicate that nascent DNA degradation in BRCA1/2-deficient cells occurs as a consequence of MRE11-dependent nucleolytic processing of reversed forks generated by fork remodelers. These studies provide mechanistic insights into the processes that cause genome instability in BRCA1/2-deficient cells.


Subject(s)
BRCA2 Protein/deficiency , DNA Breaks , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/deficiency , Cell Line, Tumor , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Genomic Instability , Humans , MRE11 Homologue Protein , Transcription Factors/genetics
9.
Nat Commun ; 6: 7033, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25926297

ABSTRACT

Despite large-scale cancer genomics studies, key somatic mutations driving cancer, and their functional roles, remain elusive. Here, we propose that analysis of comorbidities of Mendelian diseases with cancers provides a novel, systematic way to discover new cancer genes. If germline genetic variation in Mendelian loci predisposes bearers to common cancers, the same loci may harbour cancer-associated somatic variation. Compilations of clinical records spanning over 100 million patients provide an unprecedented opportunity to assess clinical associations between Mendelian diseases and cancers. We systematically compare these comorbidities against recurrent somatic mutations from more than 5,000 patients across many cancers. Using multiple measures of genetic similarity, we show that a Mendelian disease and comorbid cancer indeed have genetic alterations of significant functional similarity. This result provides a basis to identify candidate drivers in cancers including melanoma and glioblastoma. Some Mendelian diseases demonstrate 'pan-cancer' comorbidity and shared genetics across cancers.


Subject(s)
Genetic Diseases, Inborn/genetics , Neoplasms/genetics , Comorbidity , Genetic Association Studies , Genetic Diseases, Inborn/epidemiology , Genomics , Humans , Neoplasms/epidemiology
10.
Infect Genet Evol ; 12(8): 1605-13, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22742966

ABSTRACT

The evolutionary history and epidemiology of parasites may be reflected in the extent and geographic distribution of their genetic variation. Among coccidian parasites, the population structure of only Toxoplasma gondii has been extensively examined. Intraspecific variation in other coccidia, for example, those assigned to the genus Besnoitia, remains poorly defined. Here, we characterize the extent of genetic variation among populations of Besnoitia tarandi, a parasite whose intermediate hosts include reindeer/caribou (Rangifer tarandus). Isolates from the Canadian Arctic and Finnish sub-Arctic were genotyped at six microsatellite loci, the first internal transcribed spacer region of nuclear rDNA, and the RNA polymerase ß subunit (rpoB) encoded in the plastid genome. Remarkably, all isolates exhibited the same multilocus genotype, regardless of the isolate's geographic origin. This absolute monomorphism occurred despite the capacity of these loci to vary, as established by evident differentiation between B. tarandi and two other species of Besnoitia, and variation among four isolates of B. besnoiti. The surprising lack of genetic variation across the sampled range suggests that B. tarandi may have experienced a recent population bottleneck.


Subject(s)
Coccidiosis/parasitology , Microsatellite Repeats , Reindeer/parasitology , Sarcocystidae/genetics , Animals , Canada , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Finland , Genetic Variation , Genetics, Population , Muscles/parasitology , Mutation , Skin/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...