Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
World J Crit Care Med ; 11(5): 317-329, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36160934

ABSTRACT

BACKGROUND: Intensive care unit (ICU) patients demand continuous monitoring of several clinical and laboratory parameters that directly influence their medical progress and the staff's decision-making. Those data are vital in the assistance of these patients, being already used by several scoring systems. In this context, machine learning approaches have been used for medical predictions based on clinical data, which includes patient outcomes. AIM: To develop a binary classifier for the outcome of death in ICU patients based on clinical and laboratory parameters, a set formed by 1087 instances and 50 variables from ICU patients admitted to the emergency department was obtained in the "WiDS (Women in Data Science) Datathon 2020: ICU Mortality Prediction" dataset. METHODS: For categorical variables, frequencies and risk ratios were calculated. Numerical variables were computed as means and standard deviations and Mann-Whitney U tests were performed. We then divided the data into a training (80%) and test (20%) set. The training set was used to train a predictive model based on the Random Forest algorithm and the test set was used to evaluate the predictive effectiveness of the model. RESULTS: A statistically significant association was identified between need for intubation, as well predominant systemic cardiovascular involvement, and hospital death. A number of the numerical variables analyzed (for instance Glasgow Coma Score punctuations, mean arterial pressure, temperature, pH, and lactate, creatinine, albumin and bilirubin values) were also significantly associated with death outcome. The proposed binary Random Forest classifier obtained on the test set (n = 218) had an accuracy of 80.28%, sensitivity of 81.82%, specificity of 79.43%, positive predictive value of 73.26%, negative predictive value of 84.85%, F1 score of 0.74, and area under the curve score of 0.85. The predictive variables of the greatest importance were the maximum and minimum lactate values, adding up to a predictive importance of 15.54%. CONCLUSION: We demonstrated the efficacy of a Random Forest machine learning algorithm for handling clinical and laboratory data from patients under intensive monitoring. Therefore, we endorse the emerging notion that machine learning has great potential to provide us support to critically question existing methodologies, allowing improvements that reduce mortality.

2.
World J Gastrointest Endosc ; 14(5): 311-319, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35719896

ABSTRACT

BACKGROUND: Esophagitis is an inflammatory and damaging process of the esophageal mucosa, which is confirmed by endoscopic visualization and may, in extreme cases, result in stenosis, fistulization and esophageal perforation. The use of deep learning (a field of artificial intelligence) techniques can be considered to determine the presence of esophageal lesions compatible with esophagitis. AIM: To develop, using transfer learning, a deep neural network model to recognize the presence of esophagitis in endoscopic images. METHODS: Endoscopic images of 1932 patients with a diagnosis of esophagitis and 1663 patients without any pathological diagnosis provenient from the KSAVIR and HyperKSAVIR datasets were splitted in training (80%) and test (20%) and used to develop and evaluate a binary deep learning classifier built using the DenseNet-201 architecture, a densely connected convolutional network, with weights pretrained on the ImageNet image set and fine-tuned during training. The classifier model performance was evaluated in the test set according to accuracy, sensitivity, specificity and area under the receiver operating characteristic curve (AUC). RESULTS: The model was trained using Adam optimizer with a learning rate of 0.0001 and applying binary cross entropy loss function. In the test set (n = 719), the classifier achieved 93.32% accuracy, 93.18% sensitivity, 93.46% specificity and a 0.96 AUC. Heatmaps for spatial predictive relevance in esophagitis endoscopic images from the test set were also plotted. In face of the obtained results, the use of dense convolutional neural networks with pretrained and fine-tuned weights proves to be a good strategy for predictive modeling for esophagitis recognition in endoscopic images. In addition, adopting the classification approach combined with the subsequent plotting of heat maps associated with the classificatory decision gives greater explainability to the model. CONCLUSION: It is opportune to raise new studies involving transfer learning for the analysis of endoscopic images, aiming to improve, validate and disseminate its use for clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...