Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(22): 8875-8879, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38776223

ABSTRACT

This work presents a benchtop method for collecting the room temperature gas phase infrared (IR) action spectra of protonated amino acids and their isomers. The adopted setup uses a minimally modified commercial electrospray ionization linear ion trap mass spectrometer (ESI-LIT-MS) coupled to a broadband continuous wave (cw) quantum cascade laser (QCL) source. This approach leverages messenger assisted action spectroscopic techniques using water-tagged molecular ions with complex formation, irradiation, and subsequent analysis, all taking place within a single linear ion trap stage. This configuration thus circumvents the use of multiple mass selection and analysis stages, cryogenic buffer cells, and complex high-power laser systems typically called upon to execute these techniques. The benchtop action spectrometer is used to collect the 935-1600 cm-1 (6.2-10.7 µm) IR action spectrum of a collection of amino acids and a dipeptide with results cross referenced against literature examples obtained with a free electron laser source. Recorded IR spectra are used for the analysis of binary mixture samples composed of constitutional isomers α-alanine and ß-alanine with ratios determined to ∼4% measurement uncertainty without the aid of a front-end separation stage. This turn-key QCL-based approach is a major step in showing the viability of tag-based action spectroscopic techniques for use in future in situ planetary science sensors and general analytical applications.

2.
Astrobiology ; 21(10): 1316-1323, 2021 10.
Article in English | MEDLINE | ID: mdl-33944604

ABSTRACT

A lightweight, low-power instrument package to measure, in situ, both (1) the local gaseous environment and (2) the composition and microphysical properties of attendant venusian aerosols is presented. This Aerosol-Sampling Instrument Package (ASIP) would be used to explore cloud chemical and possibly biotic processes on future aerial missions such as multiweek balloon missions and on short-duration (<1 h) probes on Venus and potentially on other cloudy worlds such as Titan, the Ice Giants, and Saturn. A quadrupole ion-trap mass spectrometer (QITMS; Madzunkov and Nikolic, J Am Soc Mass Spectrom 25:1841-1852, 2014) fed alternately by (1) an aerosol separator that injects only aerosols into a vaporizer and mass spectrometer and (2) the pure aerosol-filtered atmosphere, achieves the compositional measurements. Aerosols vaporized <600°C are measured over atomic mass ranges from 2 to 300 AMU at <0.02 AMU resolution, sufficient to measure trace materials, their isotopic ratios, and potential biogenic materials embedded within H2SO4 aerosols, to better than 20% in <300 s for H2SO4 -relative abundances of 2 × 10-9. An integrated lightweight, compact nephelometer/particle-counter determines the number density and particle sizes of the sampled aerosols.


Subject(s)
Saturn , Venus , Aerosols , Atmosphere/analysis , Gases/analysis
3.
Astrobiology ; 19(10): 1196-1210, 2019 10.
Article in English | MEDLINE | ID: mdl-31347911

ABSTRACT

A new technique that has applications for the detection of nonvolatile organics on Ocean Worlds has been developed. Here, liquid mixtures of fatty acids (FAs) and/or amino acids (AAs) are introduced directly into a miniature quadrupole ion trap mass spectrometer (QITMS) developed at Jet Propulsion Laboratory and analyzed. Two ionization methods, electron impact and chemical ionization (EI and CI, respectively), are compared and contrasted. Further, multiple CI reagents are tested to explore their potential to "soften" ionization of FAs and AAs. Both EI and CI yield mass spectra that bear signatures of FAs or AAs; however, soft CI yields significantly cleaner mass spectra that are easier to interpret. The combination of soft CI with tandem mass spectrometry (MS/MS) has also been demonstrated for AAs, generating "fingerprint" mass spectra of fragments from protonated parent ions. To mimic potential Ocean World conditions, water is used as the primary collision gas in MS/MS experiments. This technique has the potential for the in situ analysis of molecules in the cryogenic plumes of Ocean Worlds (e.g., Enceladus) and comets with the ultimate goal of detecting potential biosignatures.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Oceans and Seas , Organic Chemicals/analysis , Pressure , Protons , Volatilization
4.
J Am Soc Mass Spectrom ; 26(12): 2115-24, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26286456

ABSTRACT

We present the multi-particle simulation program suite Computational Ion Trap Analyzer (CITA) designed to calculate the ion trajectories within a Paul quadrupole ion trap developed by the Jet Propulsion Laboratory (JPL). CITA uses an analytical expression of the electrodynamic field, employing up to six terms in multipole expansion and a modified velocity-Verlet method to numerically calculate ion trajectories. The computer code is multithreaded and designed to run on shared-memory architectures. CITA yields near real-time simulations with full propagation of 26 particles per second per core. As a consequence, a realistic numbers of trapped ions (100+ million) can be used and their trajectories modeled, yielding a representative prediction of mass spectrometer analysis of trace gas species. When the model is compared with experimental results conducted at low pressures using the conventional quadrupole and dipole excitation modes, there is an excellent agreement with the observed peak shapes. Owing to the program's efficiency, CITA has been used to explore regions of trapping stability that are of interest to experimental research. These results are expected to facilitate a fast and reliable modeling of ion dynamics in miniature quadrupole ion trap and improve the interpretation of observed mass spectra. Graphical Abstract ᅟ.

5.
J Am Soc Mass Spectrom ; 25(11): 1841-52, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25216693

ABSTRACT

We report an approach for the reproducible and accurate compositional analysis of different mixtures of Xe isotopes using miniature Jet Propulsion Laboratory Quadrupole Ion Trap (JPL-QIT). A major study objective was to validate the recent instrumental improvements to the long-term operational stability under different pressures, temperatures, and trapping conditions. We propose that the present device can be used in certification of trace amounts of isotopes in mixtures dominated by one or more isotopes. Measured isotopic compositions are verified against commercially available standards with accuracy better than 0.07%. To aid the analysis of experimental data, we developed a scalable replica fitting method and use peak areas as descriptors of relative isotopic abundances. This low-power and low-mass device is ideally suited for planetary explorations aimed to enhance quantitative analysis for major isotopes present in small amounts of atmospheric samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...