Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 241(3): 1210-1221, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38013640

ABSTRACT

Marine diatoms express genes encoding potential phosphate transporter and alkaline phosphatase (APase) under phosphate-limited (-P) condition. This indicates that diatoms use high-affinity phosphate uptake system with organic phosphate hydration. The function of molecules playing roles for Pi uptake was determined in this study. Pi uptake and APase activity of two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, were monitored during acclimation to -P condition. The transcript levels of Pi transporter were analyzed, and Pi transporters were localized with GFP tagging in diatom cells. KO mutants of plasma membrane solute carrier proteins (SLC34s) or APase were established, and their phenotype was evaluated. Some Na+ /Pi transporter candidates, SLC34s in P. tricornutum and T. pseudonana, increased transcript under -P condition. Whole-cell Pi transport was specifically stimulated by sodium ion but independent of potassium, lithium, or proton. Genome-editing KO of PtSLC34-5 and APase (Pt49678) in P. tricornutum was highly inhibitory for Pi uptake, and KO of TpSLC34-2 was also highly inhibitory for Pi uptake in T. pseudonana. SLC34s and APase were co-expressed under -P conditions in marine diatoms. SLC34s play a major role in the initial acclimation stage of diatom cells to -P condition and APase plays an increasing role in the prolonged Pi-starved condition.


Subject(s)
Diatoms , Diatoms/genetics , Diatoms/metabolism , Alkaline Phosphatase/metabolism , Phosphates/metabolism , Biological Transport , Membrane Transport Proteins/metabolism
2.
Plant Cell Physiol ; 60(11): 2573-2583, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31368495

ABSTRACT

Lysin motif (LysM) receptor-like kinase CERK1 is a co-receptor essential for plant immune responses against carbohydrate microbe-associated molecular patterns (MAMPs). Concerning the immediate downstream signaling components of CERK1, receptor-like cytoplasmic kinases such as PBL27 and other RLCK VII members have been reported to regulate immune responses positively. In this study, we report that a novel CERK1-interacting E3 ubiquitin ligase, PUB4, is also involved in the regulation of MAMP-triggered immune responses. Knockout of PUB4 resulted in the alteration of chitin-induced defense responses, indicating that PUB4 positively regulates reactive oxygen species generation and callose deposition but negatively regulates MAPK activation and defense gene expression. On the other hand, detailed analyses of a double knockout mutant of pub4 and sid2, a mutant of salicylic acid (SA) synthesis pathway, showed that the contradictory phenotype of the pub4 mutant was actually caused by abnormal accumulation of SA in this mutant and that PUB4 is a positive regulator of immune responses. The present and recent findings on the role of PUB4 indicate that PUB4 is a unique E3 ubiquitin ligase involved in the regulation of both plant immunity and growth/development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Plant Diseases , Plant Immunity/genetics , Plant Immunity/physiology , Signal Transduction/physiology , Ubiquitin/metabolism
3.
Plant J ; 79(1): 56-66, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24750441

ABSTRACT

Recognition of microbe-associated molecular patterns (MAMPs) initiates pattern-triggered immunity in host plants. Pattern recognition receptors (PRRs) and receptor-like cytoplasmic kinases (RLCKs) are the major components required for sensing and transduction of these molecular patterns. However, the regulation of RLCKs by PRRs and their specificity remain obscure. In this study we show that PBL27, an Arabidopsis ortholog of OsRLCK185, is an immediate downstream component of the chitin receptor CERK1 and contributes to the regulation of chitin-induced immunity in Arabidopsis. Knockout of PBL27 resulted in the suppression of several chitin-induced defense responses, including the activation of MPK3/6 and callose deposition as well as in disease resistance against fungal and bacterial infections. On the other hand, the contribution of PBL27 to flg22 signaling appears to be very limited, suggesting that PBL27 selectively regulates defense signaling downstream of specific PRR complexes. In vitro phosphorylation experiments showed that CERK1 preferentially phosphorylated PBL27 in comparison to BIK1, whereas phosphorylation of PBL27 by BAK1 was very low compared with that of BIK1. Thus, the substrate specificity of the signaling receptor-like kinases, CERK1 and BAK1, may determine the preference of downstream RLCKs.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/enzymology , Disease Resistance , Gene Expression Regulation, Plant , Plant Diseases/immunology , Signal Transduction , Alternaria/physiology , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Chitin/metabolism , Gene Knockout Techniques , Glucans/metabolism , Models, Biological , Phosphorylation , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/physiology , Plants, Genetically Modified , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Pattern Recognition , Substrate Specificity , Nicotiana/enzymology , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...