Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; 6(12): e2200936, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36287093

ABSTRACT

Circularly polarized luminescence (CPL) has been researched for various applications by control of characteristics such as chirality and magnitude. Supramolecular chirality has been prepared by vortex motion as a mechanical stimulus; however, CPL has yet to be controlled precisely and reproducibly. In this work, the first precise control of CPL under vortex flow conditions at an air-water interface is reported. The supramolecular chirality of aggregates consisting of an achiral trans-bis(salicylaldiminato)Pt(II) complex bearing hexadecyl chains is induced and controlled with vortex flow at the air-water interface, whereas the complex naturally forms an achiral amorphous solid with non-chiroptical properties under non-vortex conditions. The CPL direction and magnitude (glum value) of the Pt(II) complex aggregates can be adjusted precisely according to the vortex conditions, including the rotatory direction and flow rate. Vortex-flow-induced emission enhancement is also observed upon an increase in the rate of the vortex flow.

2.
Chemistry ; 24(48): 12546-12554, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-29863759

ABSTRACT

The supramolecular chirality of aggregates consisting of achiral trans-bis(salicylaldiminato)NiII complex 1 bearing long alkyl chains can be generated and controlled precisely in a chiral nematic liquid-crystalline (LC) solvent, whereas the complex naturally forms achiral gel fibers in achiral nematic LC solvents and crystals in nonmesogenic solvents. The direction and intensity of the helicity of the gel fibers of 1 in the LC gel state can be adjusted by means of the nature of the helical twisting and the concentration of the chiral dopants. Helicity control was precisely detected in the circular dichroism (CD) spectra of LC gels and by direct SEM observation of the dried gel fibers. XRD analysis revealed that the flexibility of the herringbone-based lamellar alignment of this complex is the key to the LC-specific gelation and helicity control of the gel fibers.

3.
J Vet Med Sci ; 66(2): 155-60, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15031543

ABSTRACT

A dramatic rise in the number of resistant Campylobacter to quinolones has been documented in human patients and domestic animals. In this study, the mechanism of acquisition of quinolone resistance was studied by detecting point mutations in the gyrA gene of Campylobacter strains obtained from broilers and strains with in vitro-induced resistance. The minimal inhibitory concentrations (MICs) of norfloxacin (NFLX) and ofloxacin (OFLX) for the strains that had no point mutation were slightly increased from the source strain (Campylobacter jejuni ATCC 33560). The MICs of nalidixic acid (NA), NFLX, and OFLX for the strains that had the point mutation at Thr-86 were 100 or 200 microg/ml, 50 microg/ml, and 25 microg/ml, respectively. The MIC of NA for the strain that had a point mutation at Asp-90 higher than those for the strains that had the point mutation at Thr-86, but the MICs of NFLX and OFLX were relatively lower than those for the strains that had point mutation at Thr-86. These findings suggest that the degree of antimicrobial resistance against NA, NFLX, and OFLX in the in vitro-induced C. jejuni strains was associated with the location of the point mutation in gyrA. On the other hand, a point mutation in all seven resistant strains isolated from broilers was located only at Thr-86, while the MICs of the three quinolones varied in each wild strain. This suggests that another mechanism might also be involved in the acquisition of quinolone resistance in C. jejuni wild strains.


Subject(s)
Campylobacter jejuni/genetics , DNA Gyrase/genetics , Drug Resistance, Bacterial/genetics , Point Mutation/genetics , Quinolines , Animals , Base Sequence , Chickens/microbiology , DNA Primers , Electrophoresis, Agar Gel , Microbial Sensitivity Tests , Molecular Sequence Data , Nalidixic Acid , Norfloxacin , Ofloxacin , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...