Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 150: 113041, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35658211

ABSTRACT

BACKGROUND: Lung diseases including chronic obstructive pulmonary disease (COPD), infections like influenza, acute respiratory distress syndrome (ARDS), asthma and pneumonia lung cancer (LC) are common causes of sickness and death worldwide due to their remoteness, cold and harsh climatic conditions, and inaccessible health care facilities. PURPOSE: Many drugs have already been proposed for the treatment of lung diseases. Few of them are in clinical trials and have the potential to cure infectious diseases. Plant extracts or herbal products have been extensively used as Traditional Chinese Medicine (TCM) and Indian Ayurveda. Moreover, it has been involved in the inhibition of certain genes/protiens effects to promote regulation of signaling pathways. Natural remedies have been scientifically proven with remarkable bioactivities and are considered a cheap and safe source for lung disease. METHODS: This comprehensive review highlighted the literature about traditional plants and their metabolites with their applications for the treatment of lung diseases through experimental models in humans. Natural drugs information and mode of mechanism have been studied through the literature retrieved by Google Scholar, ScienceDirect, SciFinder, Scopus and Medline PubMed resources against lung diseases. RESULTS: In vitro, in vivo and computational studies have been explained for natural metabolites derived from plants (like flavonoids, alkaloids, and terpenoids) against different types of lung diseases. Probiotics have also been biologically active therapeutics against cancer, anti-inflammation, antiplatelet, antiviral, and antioxidants associated with lung diseases. CONCLUSION: The results of the mentioned natural metabolites repurposed for different lung diseases especially for SARS-CoV-2 should be evaluated more by advance computational applications, experimental models in the biological system, also need to be validated by clinical trials so that we may be able to retrieve potential drugs for most challenging lung diseases especially SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Lung Diseases , Dietary Supplements , Humans , Lung Diseases/drug therapy , Medicine, Chinese Traditional , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytotherapy , Plant Extracts/pharmacology , SARS-CoV-2
2.
Curr Pharm Des ; 28(12): 948-968, 2022.
Article in English | MEDLINE | ID: mdl-34218774

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus responsible for the current global pandemic, which first emerged in December 2019. This coronavirus has affected 217 countries worldwide, most of which have enacted non-remedial preventive measures, such as nationwide lockdowns, work from home, travel bans, and social isolation. Pharmacists, doctors, nurses, technologists, and other healthcare professionals have played pivotal roles during this pandemic. Unfortunately, confirmed drugs have not been identified for the treatment of patients with coronavirus disease 2019 (COVID-19) caused by SARSCoV2; however, favipiravir and remdesivir have been reported as promising antiviral drugs. Some vaccines have already been developed, and vaccination is ongoing globally. Various nanotechnologies are currently being developed in many countries for preventing SARS-CoV-2 spread and treating COVID-19 infections. In this article, we present an overview of the COVID-19 pandemic situation and discuss nanotechnology-based approaches and investigational therapeutics for COVID-19.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/therapeutic use , Communicable Disease Control , Humans , Nanotechnology , Pandemics/prevention & control , RNA, Viral , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...