Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 69(3): 567-577, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29294038

ABSTRACT

Aluminum-sensitive rice (Oryza sativa L.) cultivars showed increased Al tolerance under dark conditions, because less Al accumulated in the root tips (1 cm) under dark than under light conditions. Under dark conditions, the root tip concentration of total sterols, which generally reduce plasma membrane permeabilization, was higher in the most Al-sensitive japonica cultivar, Koshihikari (Ko), than in the most Al-tolerant cultivar, Rikuu-132 (R132), but the phospholipid content did not differ between the two. The Al treatment increased the proportion of stigmasterol (which has no ability to reduce membrane permeabilization) out of total sterols similarly in both cultivars under light conditions, but it decreased more in Ko under dark conditions. The carotenoid content in the root tip of Al-treated Ko was significantly lower under dark than under light conditions, indicating that isopentenyl diphosphate transport from the cytosol to plastids was decreased under dark conditions. HMG2 and HMG3 (encoding the key sterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl CoA reductase) transcript levels in the root tips were enhanced under dark conditions. We suggest that the following mechanisms contribute to the increase in Al tolerance under dark conditions: inhibition of stigmasterol formation to retain membrane integrity; greater partitioning of isopentenyl diphosphate for sterol biosynthesis; and enhanced expression of HMGs to increase sterol biosynthesis.


Subject(s)
Aluminum/metabolism , Darkness , Oryza/metabolism , Phytosterols/metabolism , Cell Membrane/metabolism , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Physiol Plant ; 160(1): 11-20, 2017 May.
Article in English | MEDLINE | ID: mdl-27800617

ABSTRACT

High aluminum (Al) concentration in soil solution is the most important factor restricting plant growth in acidic soils. However, various plant species naturally grow in such soils. Generally, they are highly tolerant to Al, but organic acid exudation, the most common Al tolerance mechanism, cannot explain their tolerance. Lower phospholipid and higher sterol proportions in root plasma membrane enhance Al tolerance. Other cellular components, such as cell walls and phenolics, may also be involved in Al tolerance mechanisms. In this study, the relationships between these cellular components and the Al tolerance mechanisms in Melastoma malabathricum and Melaleuca cajuputi, both highly Al-tolerant species growing in strongly acidic soils, were investigated. Both species contained lower proportions of phospholipids and higher proportions of sterols in roots, respectively. Concentrations of phenolics in roots of both species were higher than that of rice; their phenolics could form chelates with Al. In these species, phenolic concentrations and composition were the same irrespective of the presence or absence of Al in the medium, suggesting that a higher concentration of phenolics is not a physiological response to Al but a constitutive characteristic. These characteristics of cellular components in roots may be cooperatively involved in their high Al tolerance.


Subject(s)
Aluminum/toxicity , Melastomataceae/drug effects , Melastomataceae/metabolism , Phenols/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Trees/drug effects , Trees/metabolism
3.
PLoS One ; 11(8): e0160273, 2016.
Article in English | MEDLINE | ID: mdl-27478901

ABSTRACT

Soil contains various essential and nonessential elements, all of which can be absorbed by plants. Plant ionomics is the study of the accumulation of these elements (the ionome) in plants. The ionomic profile of a plant is affected by various factors, including species, variety, organ, and environment. In this study, we cultivated various vegetable crop species and cultivars under the same field conditions and analyzed the level of accumulation of each element in the edible and nonedible parts using ionomic techniques. The concentration of each element in the edible parts differed between species, which could be partly explained by differences in the types of edible organs (root, leaf, seed, and fruit). For example, the calcium concentration was lower in seeds and fruit than in other organs because of the higher dependency of calcium accumulation on xylem transfer. The concentration of several essential microelements and nonessential elements in the edible parts also varied greatly between cultivars of the same species, knowledge of which will help in the breeding of vegetables that are biofortified or contain lower concentrations of toxic elements. Comparison of the ionomes of the fruit and leaves of tomato (Solanum lycopersicum) and eggplant (S. melongena) indicated that cadmium and boron had higher levels of accumulation in eggplant fruit, likely because of their effective transport in the phloem. We also found that homologous elements that have been reported to share the same uptake/transport system often showed significant correlation only in a few families and that the slopes of these relationships differed between families. Therefore, these differences in the characteristics of mineral accumulation are likely to affect the ionomic profiles of different families.


Subject(s)
Crops, Agricultural , Soil Pollutants/chemistry , Solanum lycopersicum/chemistry , Solanum melongena/chemistry , Boron/analysis , Cadmium/analysis , Food Safety , Fruit/chemistry , Fruit/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Mass Spectrometry , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Principal Component Analysis , Soil Pollutants/analysis , Solanum melongena/growth & development , Solanum melongena/metabolism
4.
J Exp Bot ; 66(3): 907-18, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25416794

ABSTRACT

Several studies have shown that differences in lipid composition and in the lipid biosynthetic pathway affect the aluminium (Al) tolerance of plants, but little is known about the molecular mechanisms underlying these differences. Phospholipids create a negative charge at the surface of the plasma membrane and enhance Al sensitivity as a result of the accumulation of positively charged Al(3+) ions. The phospholipids will be balanced by other electrically neutral lipids, such as sterols. In the present research, Al tolerance was compared among pea (Pisum sativum) genotypes. Compared with Al-tolerant genotypes, the Al-sensitive genotype accumulated more Al in the root tip, had a less intact plasma membrane, and showed a lower expression level of PsCYP51, which encodes obtusifoliol-14α-demethylase (OBT 14DM), a key sterol biosynthetic enzyme. The ratio of phospholipids to sterols was higher in the sensitive genotype than in the tolerant genotypes, suggesting that the sterol biosynthetic pathway plays an important role in Al tolerance. Consistent with this idea, a transgenic Arabidopsis thaliana line with knocked-down AtCYP51 expression showed an Al-sensitive phenotype. Uniconazole-P, an inhibitor of OBT 14DM, suppressed the Al tolerance of Al-tolerant genotypes of maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa), wheat (Triticum aestivum), and triticale (×Triticosecale Wittmark cv. Currency). These results suggest that increased sterol content, regulated by CYP51, with concomitant lower phospholipid content in the root tip, results in lower negativity of the plasma membrane. This appears to be a common strategy for Al tolerance among several plant species.


Subject(s)
Aluminum/metabolism , Cell Membrane/metabolism , Magnoliopsida/genetics , Phospholipids/metabolism , Sterol 14-Demethylase/genetics , Sterol 14-Demethylase/metabolism , Sterols/metabolism , Cloning, Molecular , Gene Expression , Magnoliopsida/metabolism , Models, Biological , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Analysis, DNA , Soil Pollutants/metabolism
5.
J Plant Physiol ; 171(2): 9-15, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24331414

ABSTRACT

The negative charge at the root surface is mainly derived from the phosphate group of phospholipids in plasma membranes (PMs) and the carboxyl group of pectins in cell walls, which are usually neutralized by calcium (Ca) ions contributing to maintain the root integrity. The major toxic effect of aluminum (Al) in plants is the inhibition of root elongation due to Al binding tightly to these negative sites in exchange for Ca. Because phospholipid and pectin concentrations decrease in roots of some plant species under phosphorus (P)-limiting conditions, we hypothesized that rice (Oryza sativa L.) seedlings grown under P-limiting conditions would demonstrate enhanced Al tolerance because of their fewer sites on their roots. For pretreatment, rice seedlings were grown in a culture solution with (+P) or without (-P) P. Thereafter, the seedlings were transferred to a solution with or without Al, and the lipid, pectin, hemicellulose, and mineral concentrations as well as Al tolerance were then determined. Furthermore, the low-Ca tolerance of P-pretreated seedlings was investigated under different pH conditions. The concentrations of phospholipids and pectins in the roots of rice receiving -P pretreatment were lower than those receiving +P pretreatment. As expected, seedlings receiving the -P pretreatment showed enhanced Al tolerance, accompanied by the decrease in Al accumulation in their roots and shoots. This low P-induced enhanced Al tolerance was not explained by enhanced antioxidant activities or organic acid secretion from roots but by the decrease in phospholipid and pectin concentrations in the roots. In addition, low-Ca tolerance of the roots was enhanced by the -P pretreatment under low pH conditions. This low P-induced enhancement of low-Ca tolerance may be related to the lower Ca requirement to maintain PM and cell wall structures in roots of rice with fewer phospholipids and pectins.


Subject(s)
Aluminum/metabolism , Cell Membrane/metabolism , Cell Wall/metabolism , Oryza/metabolism , Phosphorus/metabolism , Calcium/metabolism
6.
Plant Signal Behav ; 9(7): e29277, 2014.
Article in English | MEDLINE | ID: mdl-25763499

ABSTRACT

The negative charge on the plasma membrane (PM) is mainly derived from the phosphate group of phospholipids. One of the mechanisms of aluminum (Al) toxicity is to increase the PM permeability of root cells by binding to the negative sites on the PM. Thus, PM with a higher proportion of phospholipids could be more susceptible to Al toxicity. In our previous study, we showed that tolerance to Al and low-calcium in rice was enhanced by decreasing the proportion of phospholipids in root cells. Both Melastoma malabathricum L. and Melaleuca cajuputi Powell are dominant woody species that grow in tropical acid sulfate soils, and have been reported to be more tolerant to Al than rice. Surprisingly, the proportion of PM phospholipids in root cells of M. malabathricum and M. cajuputi was considerably low. Our present findings suggest that PM lipid composition plays an important role in Al tolerance mechanisms in various plant species.


Subject(s)
Adaptation, Physiological , Aluminum/metabolism , Cell Membrane/metabolism , Melaleuca/metabolism , Melastomataceae/metabolism , Phosphates/metabolism , Phospholipids/metabolism , Membrane Lipids , Oryza/metabolism , Plant Roots/metabolism , Soil/chemistry , Stress, Physiological , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...