Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 22(19): 23427-32, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25321811

ABSTRACT

We developed an optical interferometric probe for measuring the geometrical thickness and refractive index of silicon wafers based on a Fizeau-type spectral-domain interferometer, as realized by adopting the optical fiber components of a circulator and a sheet-type beam splitter. The proposed method enables us to achieve a much simpler optical composition and higher immunity to air fluctuations owing to the use of fiber components and a common-path configuration as compared to a bulk-type optical configuration. A femtosecond pulse laser having a spectral bandwidth of 80 nm at a center wavelength of 1.55 µm and an optical spectrum analyzer having a wavelength uncertainty of 0.02 nm were used to acquire multiple interference signals in the frequency domain without a mechanical phase-shifting process. Among the many peaks in the Fourier-transformed signals of the measured interferograms, only three interference signals representing three different optical path differences were selected to extract both the geometrical thickness and group refractive index of a silicon wafer simultaneously. A single point on a double-sided polished silicon wafer was measured 90 times repetitively every two seconds. The geometrical thickness and group refractive index were found to be 476.89 µm and 3.6084, respectively. The measured thickness is in good agreement with that of a contact type method within the expanded uncertainty of contact-type instruments. Through an uncertainty evaluation of the proposed method, the expanded uncertainty of the geometrical thickness was estimated to be 0.12 µm (k = 2).


Subject(s)
Algorithms , Interferometry/instrumentation , Lasers , Optical Fibers , Refractometry/instrumentation , Silicon/chemistry , Equipment Design , Optical Devices , Spectrum Analysis
2.
Opt Express ; 20(11): 12184-90, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22714206

ABSTRACT

We have proposed a modified method to improve the measurement uncertainty of the geometrical thickness and refractive index of a silicon wafer. Because measurement resolution based on Fourier domain analysis depends on the spectral bandwidth of a light source directly, a femtosecond pulse laser having the broad spectral bandwidth of about 100 nm was adopted as a new light source. A phase detection algorithm in Fourier domain was also modified to minimize the effect related to environmental disturbance. Since the wide spectral bandwidth may cause a dispersion effect in the optical parts of the proposed interferometer, it was considered carefully through numerical simulations. In conclusion, the measurement uncertainty of geometrical thickness was estimated to be 48 nm for a double-polished silicon wafer having the geometrical thickness of 320.7 µm, which was an improvement of about 20 times that obtained by the previous method.


Subject(s)
Algorithms , Interferometry/instrumentation , Lasers , Refractometry/instrumentation , Refractometry/methods , Silicon/chemistry , Data Interpretation, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...