Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pancreatology ; 22(2): 294-303, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35120820

ABSTRACT

BACKGROUND & AIMS: Sca-1 is a surface marker for murine hematopoietic stem cells (HSCs) and type-I interferon is a key regulator for Lin-Sca-1+ HSCs expansion through Ifnar/Stat-1/Sca-1-signaling. In this study we aimed to characterize the role and regulation of Sca-1+ cells in pancreatic regeneration. METHODS: To characterize Sca-1 in vivo, immunohistochemistry and immunofluorescence staining of Sca-1 was conducted in normal pancreas, in cerulein-mediated acute pancreatitis, and in Kras-triggered cancerous lesions. Ifnar/Stat-1/Sca-1-signaling was studied in type-I IFN-treated epithelial explants of adult wildtype, Ifnar-/-, and Stat-1-/- mice. Sca-1 induction was analyzed by gene expression and FACS analysis. After isolation of pancreatic epithelial Lin-Sca-1+cells, pancreatosphere-formation and immunofluorescence-assays were carried out to investigate self-renewal and differentiation capabilities. RESULTS: Sca-1+ cells were located in periacinar and periductal spaces and showed an enrichment during cerulein-induced acute pancreatitis (23.2/100 µm2 ± 4.9 SEM) and in early inflammation-mediated carcinogenic lesions of the pancreas of KrasG12D mice (35.8/100 µm2 ± SEM 1.9) compared to controls (3.6/100 µm2 ± 1.3 SEM). Pancreatic Lin-Sca-1+ cells displayed a small population of 1.46% ± 0.12 SEM in FACS. In IFN-ß treated pancreatic epithelial explants, Sca-1 expression was increased, and Lin-Sca-1+ cells were enriched in vitro (from 1.49% ± 0.36 SEM to 3.85% ± 0.78 SEM). Lin-Sca-1+ cells showed a 12 to 51-fold higher capacity for clonal self-renewal compared to Lin-Sca-1- cells and generated cells express markers of the acinar and ductal compartment. CONCLUSIONS: Pancreatic Sca-1+ cells enriched during parenchymal damage showed a significant capacity for cell renewal and in vitro plasticity, suggesting that corresponding to the type I interferon-dependent regulation of Lin-Sca-1+ hematopoietic stem cells, pancreatic Sca-1+ cells also employ type-I-interferon for regulating progenitor-cell-homeostasis.


Subject(s)
Cell Plasticity , Pancreatitis , Acute Disease , Animals , Antigens, Ly/analysis , Antigens, Ly/genetics , Antigens, Ly/metabolism , Epithelial Cells , Humans , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Pancreas/pathology , Pancreatitis/chemically induced , Pancreatitis/genetics , Pancreatitis/pathology
2.
Gastroenterology ; 161(5): 1601-1614.e23, 2021 11.
Article in English | MEDLINE | ID: mdl-34303658

ABSTRACT

BACKGROUND & AIMS: Promoted by pancreatitis, oncogenic KrasG12D triggers acinar cells' neoplastic transformation through acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia. Anterior gradient 2 (Agr2), a known inhibitor of p53, is detected at early stage of pancreatic ductal adenocarcinoma (PDAC) development. RNA polymerase II (RNAPII) is a key nuclear enzyme; regulation of its nuclear localization in mammalian cells represents a potential therapeutic target. METHODS: A mouse model of inflammation-accelerated KrasG12D-driven ADM and pancreatic intraepithelial neoplasia development was used. Pancreas-specific Agr2 ablation was performed to access its role in pancreatic carcinogenesis. Hydrophobic hexapeptides loaded in liposomes were developed to disrupt Agr2-RNAPII complex. RESULTS: We found that Agr2 is up-regulated in ADM-to-pancreatic intraepithelial neoplasia transition in inflammation and KrasG12D-driven early pancreatic carcinogenesis. Genetic ablation of Agr2 specifically blocks this metaplastic-to-neoplastic process. Mechanistically, Agr2 directs the nuclear import of RNAPII via its C-terminal nuclear localization signal, undermining the ATR-dependent p53 activation in ADM lesions. Because Agr2 binds to the largest subunit of RNAPII in a peptide motif-dependent manner, we developed a hexapeptide to interfere with the nuclear import of RNAPII by competitively disrupting the Agr2-RNAPII complex. This novel hexapeptide leads to dysfunction of RNAPII with concomitant activation of DNA damage response in early neoplastic lesions; hence, it dramatically compromises PDAC initiation in vivo. Moreover, the hexapeptide sensitizes PDAC cells and patient-derived organoids harboring wild-type p53 to RNAPII inhibitors and first-line chemotherapeutic agents in vivo. Of note, this therapeutic effect is efficient across various cancer types. CONCLUSIONS: Agr2 is identified as a novel adaptor protein for nuclear import of RNAPII in mammalian cells. Also, we provide genetic evidence defining Agr2-dependent nuclear import of RNAPII as a pharmaceutically accessible target for prevention and treatment in PDAC in the context of wild-type p53.


Subject(s)
Carcinoma in Situ/enzymology , Carcinoma, Pancreatic Ductal/enzymology , Mucoproteins/metabolism , Oncogene Proteins/metabolism , Pancreatic Neoplasms/enzymology , RNA Polymerase II/metabolism , Tumor Suppressor Protein p53/metabolism , Active Transport, Cell Nucleus , Animals , Antineoplastic Agents/pharmacology , Carcinoma in Situ/drug therapy , Carcinoma in Situ/genetics , Carcinoma in Situ/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Gene Expression Regulation, Neoplastic , Metaplasia , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mucoproteins/genetics , Mutation , Oligopeptides/pharmacology , Oncogene Proteins/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , RNA Polymerase II/genetics , Tumor Suppressor Protein p53/genetics
3.
Gastroenterology ; 160(5): 1755-1770.e17, 2021 04.
Article in English | MEDLINE | ID: mdl-33388318

ABSTRACT

BACKGROUND & AIMS: Oncogenic KrasG12D induces neoplastic transformation of pancreatic acinar cells through acinar-to-ductal metaplasia (ADM), an actin-based morphogenetic process, and drives pancreatic ductal adenocarcinoma (PDAC). mTOR (mechanistic target of rapamycin kinase) complex 1 (mTORC1) and 2 (mTORC2) contain Rptor and Rictor, respectively, and are activated downstream of KrasG12D, thereby contributing to PDAC. Yet, whether and how mTORC1 and mTORC2 impact on ADM and the identity of the actin nucleator(s) mediating such actin rearrangements remain unknown. METHODS: A mouse model of inflammation-accelerated KrasG12D-driven early pancreatic carcinogenesis was used. Rptor, Rictor, and Arpc4 (actin-related protein 2/3 complex subunit 4) were conditionally ablated in acinar cells to deactivate the function of mTORC1, mTORC2 and the actin-related protein (Arp) 2/3 complex, respectively. RESULTS: We found that mTORC1 and mTORC2 are markedly activated in human and mouse ADM lesions, and cooperate to promote KrasG12D-driven ADM in mice and in vitro. They use the Arp2/3 complex as a common downstream effector to induce the remodeling the actin cytoskeleton leading to ADM. In particular, mTORC1 regulates the translation of Rac1 (Rac family small GTPase 1) and the Arp2/3-complex subunit Arp3, whereas mTORC2 activates the Arp2/3 complex by promoting Akt/Rac1 signaling. Consistently, genetic ablation of the Arp2/3 complex prevents KrasG12D-driven ADM in vivo. In acinar cells, the Arp2/3 complex and its actin-nucleation activity mediated the formation of a basolateral actin cortex, which is indispensable for ADM and pre-neoplastic transformation. CONCLUSIONS: Here, we show that mTORC1 and mTORC2 attain a dual, yet nonredundant regulatory role in ADM and early pancreatic carcinogenesis by promoting Arp2/3 complex function. The role of Arp2/3 complex as a common effector of mTORC1 and mTORC2 fills the gap between oncogenic signals and actin dynamics underlying PDAC initiation.


Subject(s)
Acinar Cells/enzymology , Actin-Related Protein 2-3 Complex/metabolism , Carcinoma, Pancreatic Ductal/enzymology , Cell Transformation, Neoplastic/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mutation , Pancreatic Ducts/enzymology , Pancreatic Neoplasms/enzymology , Proto-Oncogene Proteins p21(ras)/genetics , Acinar Cells/pathology , Actin-Related Protein 2-3 Complex/genetics , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 2/genetics , Metaplasia , Mice, Inbred C57BL , Mice, Knockout , Pancreatic Ducts/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Regulatory-Associated Protein of mTOR/genetics , Regulatory-Associated Protein of mTOR/metabolism , Signal Transduction
4.
Pancreatology ; 20(8): 1673-1681, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33051146

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) harbors mutant KRAS as the most common driver mutation. Studies on mouse models have uncovered the tumorigenic characteristics of the Kras oncogene driving pancreatic carcinogenesis. Similarly, Ewing sarcoma predominantly depends on the occurrence of the EWSR1-FLI1 fusion oncogene. The expression of EWSR1-FLI1 affects pro-tumorigenic pathways and induces cell transformation. In this study, we investigated whether mutant Kras could be exchanged by another potent oncogene, such as EWSR1-FLI1, to initiate pancreatic cancer development. METHODS: We generated two conditional mouse models expressing mutant KrasG12D (KC) or the EWSR1-FLI1 oncogene (E/F) in pancreas cells. Pancreatic tissue was collected from the mice at 4-6 weeks and 11-13 weeks of age as well as from survival cohorts to determine the development of spontaneous acinar-to-ductal metaplasia (ADM) and neoplastic lesions. Immunohistochemistry and immunofluorescence staining were performed to characterize and quantify changes in tissue morphology. RESULTS: The expression of the EWSR1-FLI1 fusion protein in pancreas cells was confirmed by positive FLI1 immunohistochemistry staining. Notably, the EWSR1-FLI1 expression in pancreas cells resulted in a strong depletion of the acinar cell mass and an extensive lipomatosis. Although the E/F mice exhibited spontaneous ADM formation and a shorter overall survival rate compared to KC mice, no development of neoplastic lesion was observed in aging E/F mice. CONCLUSIONS: The expression of the EWSR1-FLI1 oncogene leads to a strong pancreatic atrophy and lipomatosis. ADM formation indicates that pancreatic acinar cells are susceptible for EWSR1-FLI1-mediated oncogenic transformation to a limited extent. However, the EWSR1-FLI1 oncogene is insufficient to induce pancreatic cancer development.


Subject(s)
Carcinogenesis , Carcinoma, Pancreatic Ductal , Genes, ras , Pancreas , Pancreatic Neoplasms , Proto-Oncogene Protein c-fli-1 , RNA-Binding Protein EWS , Acinar Cells , Animals , Atrophy , Carcinoma, Pancreatic Ductal/genetics , Cell Transformation, Neoplastic , Lipomatosis , Metaplasia , Mice , Oncogenes , Pancreas/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms
5.
Int J Cancer ; 144(10): 2529-2538, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30412288

ABSTRACT

Pancreatitis is a significant risk factor for pancreatic ductal adenocarcinoma (PDAC). Previous studies in mice have demonstrated that pancreatitis contributes to oncogenic Kras-driven carcinogenesis, probably initiated in acinar cells; however, oncogenic Kras alone or in combination with caerulein-induced pancreatitis is not sufficient in initiating PDAC from the ductal compartment. We thus introduced ductal obstruction - which induces a more severe form of pancreatitis - by pancreatic ductal ligation in mice harbouring oncogenic Kras. This induced a particular phenotype with highly proliferative nonmucinous cells with nuclear atypia. Around these lesions, there was a significant proliferation of activated fibroblasts and infiltration of immune cells, corroborating the pathological features of preneoplastic lesions. Lineage-tracing experiments revealed that these preneoplastic cells derived from two distinctive cellular sources: acinar and ductal cells. Phenotypic characterisation revealed that the duct-derived preneoplastic lesions show a high proliferative potential with persistent activation of tumour-promoting inflammatory pathways while the acinar-derived ones were less proliferative with persistent p53 activation. Furthermore, the duct-derived preneoplastic cells have a particularly high nuclear-to-cytoplasmic ratio. These data demonstrate that ductal obstruction promotes preneoplastic lesion formation from the pancreatic ductal compartment.


Subject(s)
Carcinogenesis/pathology , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Ducts/pathology , Pancreatic Neoplasms/pathology , Pancreatitis/pathology , Precancerous Conditions/pathology , Acinar Cells/pathology , Animals , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Fibroblasts/pathology , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/genetics , Pancreatitis/genetics , Precancerous Conditions/genetics , Tumor Suppressor Protein p53/genetics , Pancreatic Neoplasms
6.
Cell Mol Gastroenterol Hepatol ; 6(4): 429-449, 2018.
Article in English | MEDLINE | ID: mdl-30258965

ABSTRACT

Background & Aims: Although nearly half of pancreatic ductal adenocarcinoma (PDAC) patients have diabetes mellitus with episodes of hyperglycemia, its tumor microenvironment is hypoglycemic. Thus, it is crucial for PDAC cells to develop adaptive mechanisms dealing with oscillating glucose levels. So far, the biological impact of such glycemic variability on PDAC biology remains unknown. Methods: Murine PDAC cells were cultured in low- and high-glucose medium to investigate the molecular, biochemical, and metabolic influence of glycemic variability on tumor behavior. A set of in vivo functional assays including orthotopic implantation and portal and tail vein injection were used. Results were further confirmed on tissues from PDAC patients. Results: Glycemic variability has no significant effect on PDAC cell proliferation. Hypoglycemia is associated with local invasion and angiogenesis, whereas hyperglycemia promotes metastatic colonization. Increased metastatic colonization under hyperglycemia is due to increased expression of runt related transcription factor 3 (Runx3), which further activates expression of collagen, type VI, alpha 1 (Col6a1), forming a glycemic pro-metastatic pathway. Through epigenetic machinery, retinoic acid receptor beta (Rarb) expression fluctuates according to glycemic variability, acting as a critical sensor relaying the glycemic signal to Runx3/Col6a1. Moreover, the signal axis of Rarb/Runx3/Col6a1 is pharmaceutically accessible to a widely used antidiabetic substance, metformin, and Rar modulator. Finally, PDAC tissues from patients with diabetes show an increased expression of COL6A1. Conclusions: Glycemic variability promotes both local invasion and metastatic colonization of PDAC. A pro-metastatic signal axis Rarb/Runx3/Col6a1 whose activity is controlled by glycemic variability is identified. The therapeutic relevance of this pathway needs to be explored in PDAC patients, especially in those with diabetes.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Hyperglycemia/pathology , Hypoglycemia/pathology , Pancreatic Neoplasms/pathology , Animals , Carcinoma, Pancreatic Ductal/blood supply , Cell Line, Tumor , Cell Proliferation/drug effects , Collagen Type VI/metabolism , Core Binding Factor Alpha 3 Subunit/metabolism , DNA Methylation/drug effects , DNA Methylation/genetics , Diabetes Mellitus/pathology , Epigenesis, Genetic/drug effects , Gene Ontology , Histones/metabolism , Humans , Metformin/pharmacology , Mice , Neoplasm Invasiveness , Neoplasm Metastasis , Neovascularization, Pathologic/pathology , Pancreatic Neoplasms/blood supply , Promoter Regions, Genetic/genetics , Receptors, Retinoic Acid/metabolism , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...