Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 216(Pt 12): 2257-65, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23531814

ABSTRACT

Quadrupedal locomotion is the result of complex interactions between biomechanical and neural systems. During steady gaits, both systems are in stable states. When the animal changes its speed, transitions between gaits can occur in which the different coordination parameters are dissociated. Consequently, transitions are the periods where it is possible to detect and identify those parameters involved in the mechanical or neural control of locomotion. We studied interlimb coordination using a sequential method (antero-posterior sequence) to measure the footfall patterns of dogs when accelerating and decelerating from 1.5 m s(-1) to more than 6 m s(-1) and back. We obtained 383 transitions between all the symmetrical and asymmetrical gaits used by the dogs. Analysis of the interlimb coordination modifications and of each foot parameter showed that mechanics drive the stance phase whereas coordination is controlled during the swing phase. Furthermore, comparison of the transition patterns between all gaits reveals the modular organization of locomotion: a pectoral module coordinates the two forelimbs, a pelvic module coordinates the two hindlimbs and an axial module coordinates the two pairs of limbs and the trunk motion. The three modules cooperate to give rise to a template of stable interlimb coordination pattern, such as walk, trot or gallop.


Subject(s)
Dogs/physiology , Forelimb/physiology , Gait , Hindlimb/physiology , Locomotion , Acceleration , Animals , Deceleration , Videotape Recording
2.
Zoology (Jena) ; 114(4): 224-32, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21723106

ABSTRACT

Kinematic and coordination variables were studied in two carnivorans, one with known locomotor capabilities in arboreal substrates (cat), and the other a completely terrestrial species (dog). Two horizontal substrates were used: a flat trackway on the ground (overground locomotion) and an elevated and narrow runway (narrow-support locomotion). Despite their different degree of familiarity with the 'arboreal' situation, both species developed a strategy to adapt to narrow supports. The strategy of cats was based on using slower speeds, coupled with modifications to swing phase duration, to keep balance on narrow supports. The strategy of dogs relied on high speeds to gain in dynamic stability, and they increased cycle frequency by reducing swing phase duration. Furthermore, dogs showed a high variability in limb coordination, although a tendency to canter-like coordination was observed, and also avoided whole-body aerial phases. In different ways, both strategies suggested a reduction of peak vertical forces, and hence a reduction of the vertical oscillations of the centre of mass. Finally, lateral oscillation was reduced by the use of a crouched posture.


Subject(s)
Adaptation, Physiological , Locomotion/physiology , Postural Balance , Animals , Biomechanical Phenomena , Cats , Dogs
3.
J Exp Biol ; 211(Pt 1): 138-49, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18083742

ABSTRACT

Only a few studies on quadrupedal locomotion have investigated symmetrical and asymmetrical gaits in the same framework because the mechanisms underlying these two types of gait seem to be different and it took a long time to identify a common set of parameters for their simultaneous study. Moreover, despite the clear importance of the spatial dimension in animal locomotion, the relationship between temporal and spatial limb coordination has never been quantified before. We used anteroposterior sequence (APS) analysis to analyse 486 sequences from five malinois (Belgian shepherd) dogs moving at a large range of speeds (from 0.4 to 10.0 m s(-1)) to compare symmetrical and asymmetrical gaits through kinematic and limb coordination parameters. Considerable continuity was observed in cycle characteristics, from walk to rotary gallop, but at very high speeds an increase in swing duration reflected the use of sagittal flexibility of the vertebral axis to increase speed. This change occurred after the contribution of the increase in stride length had become the main element driving the increase in speed - i.e. when the dogs had adopted asymmetrical gaits. As the left and right limbs of a pair are linked to the same rigid structure, spatial coordination within pairs of limbs reflected the temporal coordination within pairs of limbs whatever the speed. By contrast, the relationship between the temporal and spatial coordination between pairs of limb was found to depend on speed and trunk length. For trot and rotary gallop, this relationship was thought also to depend on the additional action of trunk flexion and leg angle at footfall.


Subject(s)
Dogs/physiology , Locomotion/physiology , Spatial Behavior/physiology , Animals , Extremities/physiology , Gait/physiology , Regression Analysis , Time Factors
4.
J Exp Biol ; 210(Pt 2): 366-72, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17210971

ABSTRACT

A framework to study interlimb coordination, which allowed the analysis of all the symmetrical and asymmetrical gaits, was recently proposed. It suggests that gait depends on a common basic pattern controlling the coordination of the forelimbs (fore lag, FL), the coordination of the hindlimbs (hind lag, HL) and the relationship between these two pairs of limbs (pair lag, PL) in an anteroposterior sequence of movement (APS). These three time parameters are sufficient for identifying all steady gaits. We assumed in this work that this same framework could also be used to study non-steady locomotion, particularly the transitions between symmetrical and asymmetrical gaits. Moreover, as the limbs are coordinated in time and also in space during locomotion, we associated three analogous space parameters (fore gap, FG; hind gap, HG and pair gap, PG) to the three time parameters. We studied the interlimb coordination of dogs and cats moving on a runway with a symmetrical gait. In the middle of the runway, the gait was disturbed by an obstacle, and the animal had to change to an asymmetrical coordination to get over it. The time (FL, HL, PL) and space (FG, HG, PG) parameters of each sequence of the trials were calculated. The results demonstrated that the APS method allows quantification of the interlimb coordination during the symmetrical and asymmetrical phases and during the transition between them, in both dogs and cats. The space and time parameters make it possible to link the timing and the spacing of the footfalls, and to quantify the spatiotemporal dimension of gaits in different mammals. The slight differences observed between dogs and cats could reflect their morphological differences. The APS method could thus be used to understand the implication of morphology in interlimb coordination. All these results are consistent with current knowledge in biomechanics and neurobiology, therefore the APS reflects the actual biological functioning of quadrupedal interlimb coordination.


Subject(s)
Cats/physiology , Dogs/physiology , Extremities/physiology , Gait/physiology , Locomotion/physiology , Animals , Biomechanical Phenomena , Cats/anatomy & histology , Dogs/anatomy & histology , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...