Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Food Sci Nutr ; 35(3): 231-62, 1995 Jan.
Article in English | MEDLINE | ID: mdl-7632355

ABSTRACT

In this review, current methods used to evaluate the integrated impact of time and temperature upon preserving a food product by a heat treatment are considered. After identifying the basic premise any preservation scheme shall meet, the central role of a feasible description for the heat activation kinetics of microorganisms, their spores, and other quality attributes are stressed. Common concepts to quantify a thermal process are presented. Shortcomings of the prevalent evaluation methods are highlighted and attention is given to the development, restrictions, and possibilities of time-temperature-integrators as "new" evaluation tools to measure the impact of a "classical" in-pack heat treatment and more modern heating techniques such as continuous processing of solid/liquid mixtures on foods.


Subject(s)
Food Preservation/methods , Temperature , Time Factors , Food Handling/methods , Hot Temperature , Kinetics , Mathematics
2.
J Chem Technol Biotechnol ; 59(2): 193-9, 1994 Feb.
Article in English | MEDLINE | ID: mdl-7764538

ABSTRACT

For the immobilization of Bacillus licheniformis alpha-amylase to porous glass beads, the performances of three possible linking agents, glutaric dialdehyde, benzoquinone and s-trichlorotriazine were assessed in respect of the protein yield, the enzymic activity and the thermostability of the immobilized enzyme. These three properties are to be evaluated in view of the possible use of the enzyme preparations as time-temperature-integrators (TTIs) for assessing the severity of heat pasteurization or sterilization processes of food or pharmaceuticals. All three linkers improved the enzyme's resistance to irreversible heat inactivation to a similar extent and in each case biphasic inactivation kinetics were observed, whereas the dissolved B. licheniformis alpha-amylase showed a simple first order decay. The immobilization yield, measured as protein per carrier weight, did not differ markedly for the three linkers, although the enzymic activity of the glutaric dialdehyde-linked enzyme was lower than that of the benzoquinone- and s-trichlorotriazine-linked preparations.


Subject(s)
Bacillus/enzymology , Enzymes, Immobilized , alpha-Amylases/chemistry , Benzoquinones , Enzyme Stability , Glutaral , Spectrophotometry , Temperature , Time Factors
3.
Biotechnol Bioeng ; 43(2): 107-14, 1994 Jan 20.
Article in English | MEDLINE | ID: mdl-18615603

ABSTRACT

The influence of polyhydric alcohols and carbohydrates on the thermostability, i.e., the heat inactivation kinetics, of Bacillus licheniformis alpha-amylase was studied in the temperature range 96 degrees to 130 degrees C. High concentrations (from 9 to 60 weight percent) of glycerol, sorbitol, mannitol, sucrose, or starch can markedly decrease the inactivation rate constant, k, and in the studied cases, this stabilizing effect grows stronger with increasing additive concentration. Statements about stabilization should, however, be specified carefully with respect to temperature, because E(A) is mostly altered likewise. For dissolved enzyme E(A) was almost always decreased in the presence of polyol or carbohydrate, whereas for immobilized enzyme it was augmented in each studied instance. The inactivation of dissolved enzyme can, in all the studied cases, be adequately described as a first-order process. Immobilized enzyme, however, shows biphasic then first-order inactivation kinetics, depending on the additive concentration and temperature.

4.
Biotechnol Bioeng ; 40(3): 396-402, 1992 Jul.
Article in English | MEDLINE | ID: mdl-18601130

ABSTRACT

In view of a possible application of the alpha-amylase from Bacillus licheniformis as a time-temperature integrator for evaluation of heat processes,(11) thermal inactivation kinetics of the dissolved and covalently immobilized enzyme were studied in the temperature range 90-108 degrees C. The D-values (95 degrees C) for inactivation of alpha-amylase, dissolved in tris-HCl buffer, ranged from 6 to 157 min, depending on pH, ionic strength, and Ca(2+) and enzyme concentration. The z-value fluctuated between 6.2 and 7.6 degrees C. On immobilization of the alpha-amylase by covalent coupling with glutaraldehyde to porous glass beads, the thermoinactivation kinetics became biphasic under certain circumstances. For immobilized enzyme, the D-values (95 degrees C) ranged between 17 and 620 min, depending largely on certain environmental conditions. The z-value fluctuated between 8.1 and 12.9 degrees C. In each case of biphasic inactivation, the z-value of the stable fraction (with the higher D-values) was lower than the z-value of the labile fraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...