Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 9: 932185, 2022.
Article in English | MEDLINE | ID: mdl-36204294

ABSTRACT

Magnetic resonance imaging (MRI) signal changes associated with ischemic stroke are typically described as T2w and FLAIR hyperintense, and T1w isointense lesions. Intralesional T1w hyperintensity is generally attributed to either a hemorrhagic stroke, or an ischemic stroke with hemorrhagic transition, and has an associated signal void on gradient echo (GE) sequences. Cases of ischemic stroke with T1w hyperintense signal in absence of associated signal void on GE sequences have been sporadically demonstrated in human stroke patients, as well as in dogs with experimentally induced ischemia of the middle cerebral artery. This multicenter retrospective descriptive study investigates the presence of T1w hyperintensity in canine stroke without associated signal void on GE sequences. High field (1.5 Tesla) MRI studies of 12 dogs with clinical presentation, MRI features, and cerebrospinal fluid results suggestive of non-hemorrhagic stroke were assessed. The time between the observed onset of clinical signs and MRI assessment was recorded. All 12 patients had an intralesional T1w hyperintense signal compared to gray and white matter, and absence of signal void on T2*w GE or SWI sequences. Intralesional T1w hyperintensities were either homogenously distributed throughout the entire lesion (6/12) or had a rim-like peripheral distribution (6/12). The mean time between the recorded onset of clinical signs and MRI assessment was 3 days; however, the age range of lesions with T1w hyperintense signal observed was 1-21days, suggesting that such signal intensities can be observed in acute, subacute, or chronic stages of ischemic stroke. Follow-up was recorded for 7/12 cases, all of which showed evidence of neurological improvement while in hospital, and survived to discharge. Correlation of the age and MRI appearance of lesions in this study with similar lesions observed in human and experimental studies suggests that these T1w hyperintensities are likely caused by partial tissue infarction or selective neuronal necrosis, providing an alternative differential for these T1w hyperintensities observed.

2.
J Am Vet Med Assoc ; 260(1): 71-81, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34793322

ABSTRACT

OBJECTIVE: To determine the prevalence of presumed postictal changes (PC) on brain MRI in epileptic dogs, describe their distribution, and recognize possible correlations with different epilepsy features. ANIMALS: 540 client-owned dogs with epilepsy and a complete medical record that underwent brain MRI at 4 veterinary referral hospitals between 2016 and 2019. PROCEDURES: Data were collected regarding signalment, seizure type, seizure severity, time between last seizure and MRI, and etiological classification of epilepsy. Postictal changes were considered when solitary or multiple intraparenchymal hyperintense lesions were observed on T2-weighted and fluid-attenuated inversion recovery images and were hypointense or isointense on T1-weighted sequences, which were not confined to a vascular territory and showed no to mild mass effect and no to mild contrast enhancement. RESULTS: Sixty-seven dogs (12.4%) showed MRI features consistent with PC. The most common brain sites affected were the piriform lobe, hippocampus, temporal neocortex, and cingulate gyrus. Dogs having suffered cluster seizures or status epilepticus were associated with a higher probability of occurrence of PC, compared to dogs with self-limiting seizures (OR 2.39; 95% confidence interval, 1.33 to 4.30). Suspected PC were detected both in dogs with idiopathic epilepsy and in those with structural epilepsy. Dogs with unknown-origin epilepsy were more likely to have presumed PC than were dogs with structural (OR 0.15; 95% confidence interval, 0.06 to 0.33) or idiopathic epilepsy (OR 0.42; 95% confidence interval, 0.20 to 0.87). Time between last seizure and MRI was significantly shorter in dogs with PC. CLINICAL RELEVANCE: MRI lesions consistent with PC were common in epileptic dogs, and the brain distribution of these lesions varied. Occurrence of cluster seizures or status epilepticus, diagnosis of unknown origin epilepsy, and lower time from last seizure to MRI are predictors of suspected PC.


Subject(s)
Dog Diseases , Epilepsy , Animals , Brain/diagnostic imaging , Brain/pathology , Dog Diseases/diagnostic imaging , Dog Diseases/epidemiology , Dogs , Epilepsy/diagnostic imaging , Epilepsy/epidemiology , Epilepsy/veterinary , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/veterinary , Prevalence
3.
Front Vet Sci ; 7: 468, 2020.
Article in English | MEDLINE | ID: mdl-32923464

ABSTRACT

Cases of cycad toxicosis have been described in dogs that have presented with gastrointestinal, hematologic, hepatic, neurological, and carcinogenic signs. This case report describes brain magnetic resonance imaging (MRI) lesions in a dog with gastrointestinal and neurological signs secondary to cycad toxicosis. A 5-year-old neutered female Jack Russell terrier presented with a 2-days history of gastroenteric signs, progressive generalized tremors, and altered mentation after possible ingestion of Cycad revoluta. Neurologic examinations revealed disorientation, a wide-based stance, severe spasticity of the four limbs, intention tremors, severe cerebellar ataxia, decreased postural reactions in all four limbs, and intermittent decreased menace response in both eyes-all of which are consistent with a multifocal intracranial disorder involving the forebrain and cerebellum. A brain MRI showed diffuse/ill-defined, intra-axial bilateral and symmetrical changes, predominantly affecting the white matter of the cerebral hemispheres, thalamus, hippocampus, and cerebellum. A presumptive diagnosis of toxic-metabolic encephalopathy was made. Medical management of the clinical signs was performed, and the dog was discharged 7 days after presentation with no neurological abnormalities. Two and 8 weeks later, complete blood count (CBC), chemistry, electrolytes, and 8 weeks later brain MRI were performed, revealing no abnormalities. To the best of the authors' knowledge, this is the first case report describing lesions detected by brain MRI secondary to cycad toxicosis as well as a complete resolution of brain lesions on a follow-up MRI 8 weeks later.

SELECTION OF CITATIONS
SEARCH DETAIL
...