Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 5(31): 19453-19463, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32803039

ABSTRACT

To contribute a solution for the global warming problem, the selective electrochemical reduction of CO2 to CO was studied in the gas phase using a [CO2(g), Co-N-C cathode | Nafion-H | Pt/C anode, H2/water] system without using carbonate solutions. The Co-N-C electrocatalysts were synthesized by partial pyrolysis of precursors in inert gas, which were prepared from various N-bidentate ligands, Co(NO3)2, and Ketjenblack (KB). The most active electrocatalyst was Co-(4,4'-dimethyl-2,2'-bipyridine)/KB pyrolyzed at 673 K, denoted Co-4,4'-dmbpy/KB(673K). A high performance of CO formation (331 µmol h-1 cm-2, 217 TOF h-1) at 0.020 A cm-2 with 78% current efficiency was obtained at -0.75 V (SHE) and 273 K under strong acidic conditions of Nafion-H. Characterization studies using extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy-energy-dispersive X-ray (TEM-EDX), X-ray diffraction (XRD), and temperature-programmed desorption with mass spectrometry (TPD-MS) indicated the active site as Co coordinated with four N atoms bonding the surface of KB, abbreviated Co-N4-C x structure. A model of the reduction mechanism of CO2 on the active site was proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...