Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
An Acad Bras Cienc ; 93(suppl 1): e20201096, 2021.
Article in English | MEDLINE | ID: mdl-34076206

ABSTRACT

BINGO (BAO from Integrated Neutral Gas Observations) is a unique radio telescope designed to map the intensity of neutral hydrogen distribution at cosmological distances, making the first detection of Baryon Acoustic Oscillations (BAO) in the frequency band 980 MHz - 1260 MHz, corresponding to a redshift range 0.127 < z < 0.449. BAO is one of the most powerful probes of cosmological parameters and BINGO was designed to detect the BAO signal to a level that makes it possible to put new constraints on the equation of state of dark energy. The telescope will be built in Paraíba, Brazil and consists of two \thicksim 40m mirrors, a feedhorn array of 50 horns, and no moving parts, working as a drift-scan instrument. It will cover a 15 ^{\circ} ∘ declination strip centered at \sim \delta ∼ δ =-15 ^{\circ} ∘ , mapping \sim ∼ 5400 square degrees in the sky. The BINGO consortium is led by University of São Paulo with co-leadership at National Institute for Space Research and Campina Grande Federal University (Brazil). Telescope subsystems have already been fabricated and tested, and the dish and structure fabrication are expected to start in late 2020, as well as the road and terrain preparation.

2.
Appl Opt ; 55(36): 10255-10262, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-28059242

ABSTRACT

The quasi-optical modulation of linear polarization at millimeter and sub-millimeter wavelengths can be achieved by using rotating half-wave plates (HWPs) in front of polarization-sensitive detectors. Large operational bandwidths are required when the same device is meant to work simultaneously across different frequency bands. Previous realizations of half-wave plates, ranging from birefringent multi-plates to mesh-based devices, have achieved bandwidths of the order of 100%. Here we present the design and experimental characterization of a reflective HWP able to work across bandwidths of the order of 150%. The working principle of the novel device is completely different from any previous realization, and it is based on the different phase-shift experienced by two orthogonal polarizations reflecting, respectively, off an electric conductor and an artificial magnetic conductor.

3.
Opt Express ; 22(12): 14712-26, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24977567

ABSTRACT

Proof of concept measurements of a modular spiral phase plate design able to generate millimetre wavelength beams with an azimuthal mode number of l = ±10 are presented. The plate is comprised of ten single modules that interlock to create the full plate assembly, allowing improved machining accuracy compared to standard techniques. Therefore, this design could be used in millimetre wavelength systems that require the manipulation of large OAM modes. The plate was manufactured from polypropylene (index of refraction n ≈ 1.5), and was measured at 100GHz. A three dimensional field scanner was used to measure three near field surfaces behind the plate. Intensity measurements showed the expected OAM intensity ring, and phase measurements showed ten phase dislocations, implying proper functionality.

4.
Opt Lett ; 39(3): 626-9, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24487882

ABSTRACT

Initial three-dimensional phase and intensity measurements of a 100 GHz l=±1 orbital angular momentum (OAM) vortex are presented. The vortex was generated by illuminating a polypropylene spiral phase plate. Measurements were taken with a three-dimensional field scanner operating in the W-band (75-100 GHz). Early analysis shows splitting of the OAM phase dislocation at the vortex center, resulting in a complex inner vortex intensity pattern.

5.
Appl Opt ; 52(11): 2218-25, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23670749

ABSTRACT

A flat lens based on subwavelength periodic metal meshes has been developed using photolithographic techniques. These mesh grids are stacked at specific distances and embedded in polypropylene. A code was developed to optimize more than 1000 transmission line circuits required to vary the device phase shift across the lens flat surface, mimicking the behavior of a classical lens. A W-band mesh-lens prototype was successfully manufactured and its RF performance characterized using a vector network analyzer coupled to corrugated horn antennas. Co-polarization far-field beam patterns were measured and compared with finite-element method models. The excellent agreement between data and simulations validated our designing tools and manufacturing procedures. This mesh lens is a low-loss, robust, light, and compact device that has many potential applications including millimeter wave quasi-optical systems for future cosmic microwave background polarization instruments.

6.
Appl Opt ; 52(4): 635-9, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23385900

ABSTRACT

q-plates are quasi-optical devices specifically designed to generate and detect the orbital angular momentum states of the light. It is possible to produce q-plates working at millimeter wavelengths by using a well-known and cheap manufacturing technique. The technique consists of creating inhomogeneous, artificial birefringent materials by machining grooves with specific geometries into normal dielectric materials. In this work, a q-plate working around 100 GHz has been designed, manufactured, and tested using a vector network analyzer. The experimental data validate the modeled intensity and phase for the transformation of an incident Gaussian beam.

SELECTION OF CITATIONS
SEARCH DETAIL
...