Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 60(10): 2638-46, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22332880

ABSTRACT

Wine is a complex consumer product produced predominately by the action of yeast upon grape juice musts. Model must systems have proven ideal for studies of the effects of fermentation conditions on the production of certain wine volatiles. To identify grape-derived precursors to acetate esters, model fermentation systems were developed by spiking precursors into model must at different concentrations. Solid-phase microextraction-gas chromatgraphy mass spectrometry analysis of the fermented wines showed that a variety of grape-derived aliphatic alcohols and aldehydes are precursors to acetate esters. The C6 compounds hexan-1-ol, hexenal, (E)-2-hexen-1-ol, and (E)-2-hexenal are all precursors to hexyl acetate, and octanol and benzyl alcohol are precursors to octyl acetate and benzyl acetate, respectively. In these cases, the postfermentation concentration of an acetate ester increased proportionally with the prefermentation concentration of the respective precursor in the model must. Determining viticultural or winemaking methods to alter the prefermentation concentration of precursor compounds or change the precursor-to-acetate ester ratio will have implications upon the final flavor and aroma of wines.


Subject(s)
Acetates/metabolism , Saccharomyces cerevisiae/metabolism , Vitis/chemistry , Vitis/microbiology , Volatile Organic Compounds/analysis , Wine/analysis , Acetates/chemistry , Fermentation , Molecular Structure , Volatile Organic Compounds/metabolism
2.
Funct Plant Biol ; 31(6): 659-669, 2004 Jul.
Article in English | MEDLINE | ID: mdl-32688937

ABSTRACT

Gradients were observed in xylem sap ABA and in stomatal conductance along canes of Vitis vinifera L. cv. Shiraz. To investigate the source of the ABA responsible for these gradients a series of girdling and decapitation experiments were carried out. Leaf stomatal conductance and bulk ABA of leaves and apices were measured in control plants and in response to apex removal or girdling. Gradients in leaf ABA were observed over the first eight expanded leaves of field-grown Shiraz, with higher concentrations of ABA observed towards the apex. Gradients in stomatal conductance that correlated negatively with the concentration of ABA in the leaf ([ABA]leaf) were also observed over the first eight leaves. No significant effect of decapitation was observed on either leaf ABA or stomatal conductance except for the leaf immediately below the apex where a transient increase in [ABA]leaf was observed after 24 h with no corresponding decrease in conductance. Girdling resulted in an increase in [ABA]leaf in leaves distal to the girdle without the corresponding effect on conductance. These effects were further studied at the level of gene activity. To facilitate this, gene sequences encoding two key enzymes involved in the biosynthetic pathway of ABA in grape, zeaxanthin epoxidase (Zep) and 9-cis-epoxycarotenoid dioxygenase (NCED), were isolated and characterised. The cDNA sequences were used as probes to measure the abundances of their respective mRNAs in the leaf and apical material. Levels of expression of one of the two genes encoding NCED, VvNCED1, reflected the gradients in [ABA]leaf in control vines, however treatment-induced changes in ABA were not always associated with corresponding changes in VvNCED1 expression. The abundances of both the VvNCED2 mRNA and Zep mRNA increased with increasing leaf age and did not appear to be associated with either the [ABA]leaf or the expression of VvNCED1.

SELECTION OF CITATIONS
SEARCH DETAIL
...