Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685874

ABSTRACT

In the era of personalized medicine greatly improved by molecular diagnosis and tailor-made therapies, the survival rate of acute myeloid leukemia (AML) at 5 years remains unfortunately low. Indeed, the high heterogeneity of AML clones with distinct metabolic and molecular profiles allows them to survive the chemotherapy-induced changes, thus leading to resistance, clonal evolution, and relapse. Moreover, leukemic stem cells (LSCs), the quiescent reservoir of residual disease, can persist for a long time and activate the recurrence of disease, supported by significant metabolic differences compared to AML blasts. All these points highlight the relevance to develop combination therapies, including metabolism inhibitors to improve treatment efficacy. In this review, we summarized the metabolic differences in AML blasts and LSCs, the molecular pathways related to mitochondria and metabolism are druggable and targeted in leukemia therapies, with a distinct interest for Venetoclax, which has revolutionized the therapeutic paradigms of several leukemia subtype, unfit for intensive treatment regimens.


Subject(s)
Leukemia , Mitochondria , Humans , Cell Division , Clonal Evolution , Clone Cells
3.
J Exp Clin Cancer Res ; 40(1): 136, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33863364

ABSTRACT

BACKGROUND: Oxidative stress is a hallmark of many cancers. The increment in reactive oxygen species (ROS), resulting from an increased mitochondrial respiration, is the major cause of oxidative stress. Cell fate is known to be intricately linked to the amount of ROS produced. The direct generation of ROS is also one of the mechanisms exploited by common anticancer therapies, such as chemotherapy. METHODS: We assessed the role of NFKBIA with various approaches, including in silico analyses, RNA-silencing and xenotransplantation. Western blot analyses, immunohistochemistry and RT-qPCR were used to detect the expression of specific proteins and genes. Immunoprecipitation and pull-down experiments were used to evaluate protein-protein interactions. RESULTS: Here, by using an in silico approach, following the identification of NFKBIA (the gene encoding IκBα) amplification in various cancers, we described an inverse correlation between IκBα, oxidative metabolism, and ROS production in lung cancer. Furthermore, we showed that novel IκBα targeting compounds combined with cisplatin treatment promote an increase in ROS beyond the tolerated threshold, thus causing death by oxytosis. CONCLUSIONS: NFKBIA amplification and IκBα overexpression identify a unique cancer subtype associated with specific expression profile and metabolic signatures. Through p65-NFKB regulation, IκBα overexpression favors metabolic rewiring of cancer cells and distinct susceptibility to cisplatin. Lastly, we have developed a novel approach to disrupt IκBα/p65 interaction, restoring p65-mediated apoptotic responses to cisplatin due to mitochondria deregulation and ROS-production.


Subject(s)
Cell Death/genetics , Lung Neoplasms/genetics , NF-KappaB Inhibitor alpha/therapeutic use , Oxidative Stress/genetics , Humans , Lung Neoplasms/pathology , NF-KappaB Inhibitor alpha/pharmacology
4.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33669945

ABSTRACT

For many years in the field of onco-hematology much attention has been given to mutations in protein-coding genes or to genetic alterations, including large chromosomal losses or rearrangements. Despite this, biological and clinical needs in this sector remain unmet. Therefore, it is not surprising that recent studies have shifted from coded to non-coded matter. The discovery of non-coding RNAs (ncRNAs) has influenced several aspects related to the treatment of cancer. In particular, in chronic lymphocytic leukemia (CLL) the knowledge of ncRNAs and their contextualization have led to the identification of new biomarkers used to follow the course of the disease, to the anticipation of mechanisms that support resistance and relapse, and to the selection of novel targeted treatment regimens. In this review, we will summarize the main ncRNAs discovered in CLL and the molecular mechanisms by which they are affected and how they influence the development and the progression of the disease.

5.
Cell Mol Life Sci ; 77(22): 4449-4458, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32322927

ABSTRACT

The onco-suppressor p53 is a transcription factor that regulates a wide spectrum of genes involved in various cellular functions including apoptosis, cell cycle arrest, senescence, autophagy, DNA repair and angiogenesis. p53 and NF-κB generally have opposing effects in cancer cells. While p53 activity is associated with apoptosis induction, the stimulation of NF-κB has been demonstrated to promote resistance to programmed cell death. Although the transcription factor NF-κB family is considered as the master regulator of cancer development and maintenance, it has been mainly studied in relation to its ability to regulate p53. This has revealed the importance of the crosstalk between NF-κB, p53 and other crucial cell signaling pathways. This review analyzes the various mechanisms by which NF-κB regulates the activity of p53 and the role of p53 on NF-κB activity.


Subject(s)
NF-kappa B/genetics , Tumor Suppressor Protein p53/genetics , Animals , Gene Expression Regulation/genetics , Humans , Signal Transduction/genetics
6.
Cancers (Basel) ; 12(3)2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32182763

ABSTRACT

Tumor suppressors play an important role in cancer pathogenesis and in the modulation of resistance to treatments. Loss of function of the proteins encoded by tumor suppressors, through genomic inactivation of the gene, disable all the controls that balance growth, survival, and apoptosis, promoting cancer transformation. Parallel to genetic impairments, tumor suppressor products may also be functionally inactivated in the absence of mutations/deletions upon post-transcriptional and post-translational modifications. Because restoring tumor suppressor functions remains the most effective and selective approach to induce apoptosis in cancer, the dissection of mechanisms of tumor suppressor inactivation is advisable in order to further augment targeted strategies. This review will summarize the role of tumor suppressors in chronic lymphocytic leukemia and attempt to describe how tumor suppressors can represent new hopes in our arsenal against chronic lymphocytic leukemia (CLL).

7.
J Cell Mol Med ; 24(2): 1650-1657, 2020 01.
Article in English | MEDLINE | ID: mdl-31821686

ABSTRACT

The development of drugs able to target BTK, PI3k-delta and BCL2 has dramatically improved chronic lymphocytic leukaemia (CLL) therapies. However, drug resistance to these therapies has already been reported due to non-recurrent changes in oncogenic pathways and genes expression signatures. In this study, we investigated the cooperative role of the BCL2 inhibitor venetoclax and the BRD4 inhibitor JQ1. In particular, we found that JQ1 shows additional activity with venetoclax, in CLL cell lines and in ex vivo isolated primary CD19+ lymphocytes, arguing in favour of combination strategies. Lastly, JQ1 is also effective in venetoclax-resistant CLL cell lines. Together, our findings indicated that the BET inhibitor JQ1 could be a promising therapy in CLL, both as first-line therapy in combination with venetoclax and as second-line therapy, after the emergence of venetoclax-resistant clones.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Sulfonamides/therapeutic use , Transcription Factors/antagonists & inhibitors , Azepines/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Humans , Sulfonamides/pharmacology , Transcription Factors/metabolism , Triazoles/pharmacology
8.
Blood Lymphat Cancer ; 9: 45-52, 2019.
Article in English | MEDLINE | ID: mdl-31807112

ABSTRACT

Chronic Myeloid Leukaemia is a myeloproliferative disorder driven by the t(9;22) chromosomal translocation coding for the chimeric protein BCR-ABL. CML treatment represents the paradigm of molecular therapy of cancer. Since the development of the tyrosine kinase inhibitor of the BCR-ABL kinase, the clinical approach to CML has dramatically changed, with a stunning improvement in the quality of life and response rates of patients. However, it remains clear that tyrosine kinase inhibitors (TKIs) are unable to target the most immature cellular component of CML, the CML stem cell. This review summarizes new insights into the mechanisms of resistance to TKIs.

SELECTION OF CITATIONS
SEARCH DETAIL
...